APPLICATIONS OF BINARY CLASSIFICATION AND ADAPTIVE
BOOSTING TO THE QUERY-BY-HUMMING PROBLEM

Charles Parker
Oregon State University
102 Dearborn Hall
Corvallis, OR 97333

parker@cs.orst.edu

ABSTRACT

In the query-by-humming problem, we attempt to re-
trieve a speci c¢ song from a target set based on a sung
query. Recent evaluations of query-by-humming systems
show that the state-of-the-art algorithm is a simple dy-
namic programming-based interval matching technique.
Other techniques based on hidden Markov models are far
more expensive computationally and do not appear to of-
fer signi cant increases in performance. Here, we borrow
techniques from arti cial intelligence to create an algo-
rithm able to outperform the current state-of-the-art with
only a negligible increase in running time.

Keywords: melodic retrieval, sequence alignment, arti-
cial intelligence

1 INTRODUCTION

Most music-related information queries are currently
based on meta-data, such as the title or artist of a song.
In recent years, we have attempted to create a system in
which musical queries could be formed musically, giving
us, as Downie [1] has said, the ability to query music on
its own terms .

One such notion of musical queries is query-by-
humming , where a user sings, hums, or whistles a query
tune to a computer. The computer has a database of pos-
sible songs and attempts to return the song rendered by
the user, or perhaps return a ranked list of possible songs.
Many possible applications for this have be discussed in a
small but growing literature on the problem, ranging from
entertainment to commercial to legal. Unfortunately, the
problem has proven very dif cult to solve adequately, in-
volving subproblems like pitch detection, note segmenta-
tion, polyphonic transcription, and sequence alignment.

It is on the last of these that we will attempt to
make progress in this paper. Recent evaluations of var-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

(©2005 Queen Mary, University of London

ious query-by-humming systems have shown that a sim-
ple interval-based note matching approach is able to per-
form as well as other more complex Markov model-based
methods when given reasonable queries [2, 3]. Have we
reached the best attainable performance on this subprob-
lem?

In this paper, we rst brie y overview query-by-
humming and general sequence matching problems. We
then review binary classi cation and present a method for
constructing alignment models using binary classi cation.
Finally, we use adaptive boosting to combine our hand-
built model with several learned models to create a model
that outperforms both on a set of collected test queries.
Our concluding remarks indicate improvements for the al-
gorithm and other possible uses for this formalism.

2 BACKGROUND
2.1 Query-by-humming and Sequence Alignment

In the last ten years, the so-called query-by-humming
problem has garnered moderate attention in both the in-
formation retrieval and the arti cial intelligence literature.
Brie y, the problem is as follows: A human sings a query
song q; that corresponds to some target song t; in a
target set T. If Q is the space of all possible queries, then
our goal is to learn a function f that maps a query q; € Q
to the correct target C'(q;) = t;

Vi: f(a;,T)=C(q;) = t; (D

Often, this is done by creating a function ' : 7 x Q
R so that any (query, target) combination can be given a
score, which should be maximized (or minimized) when a
query is combined with a matching target:

f(q,T) = argmax F(t, q) @
teT

De ning the function F' also gives us a convenient
method for ranking the targets. The rank of a query in
a certain target set is the number of incorrect targets that
appear to match the query better than the correct target,
given a scoring function. Formally, suppose we have a
scoring function F', a query q, and a target set 7 contain-
ing the correct target C'(q;). The rank of q under F is:

245

rankp(q,7) =
#r (bl F(ti;q) > F(C(a),q) AC(q) # t:))

This de nition will be used in what follows.

How do we design a good scoring function? Although
there are other approaches that merit consideration [4, 5],
the prevalent approach in the literature is to convert both
target and query into monophonic sequences of notes'.
These processes are outlined fully in [6] and [2] so we
only brie y explain them here. Figure 1 is a summary of

this process.
Raw Audio from
User Query

Pitch Extraction

Raw Audio on Disk
(WAV, MP3 files)

Polyphonic Transcription

Sequence of audio frames,
Set of

each with value for pitch

Polyphonic MIDI Files and possibly “confidence”

Melody Spotting/

Thematic Extraction Note Segmentation

Set of monophonic
themes/melodies,

one or more from each

target song

Sequence of “events” -
notes or intervals between
notes

Sequence Matching

Ranked list of targets

Output to User

Figure 1: A possible general form of a Query-by-
Humming system.

For the Query, we begin with raw audio (e.g., in
WAV format). We then separate the query into a num-
ber of xed-length frames (usually on the order of 0.01
sec.). Each frame is passed to a pitch detection algo-
rithm [7] that returns the strongest frequency in that frame
along with a confidence value indicating the dominance
of the strongest frequency. We then sequentially step
through these frames, grouping frames of like frequency
into notes , using a note segmentation algorithm.

For the target, this process is even harder, usually in-
volving the dif cult subproblems of polyphonic transcrip-
tion (transcribing a raw audio signal that is polyphonic),
melody spotting (distinguishing melody notes from non-
melody ones), and thematic extraction (extracting coher-
ent themes from a long melody sequence). For our ex-
periments, we use a set of monophonic MIDI les in a
publicly available database [8] as our target set, and so we
avoid this half of the problem.

'In [3], the target is instead converted to several monophonic

themes, each mapping back to the target, but the spirit is gener-
ally the same.

246

Once we have both target songs and query songs rep-
resented as sequences, our problem can be restated as a
problem in sequence alignment. The standard algorithm
for sequence alignment is typically attributed to Smith
and Waterman [9] and restated several places in the query-
by-humming literature. This algorithm uses edit costs to
determine the cost of transforming one sequence into an-
other, and uses this to score a target with respect to the
query.

Formally, suppose we have a target sequence t rep-
resented as a series of notes t1,%s,...,t, and a query
q represented as a series of notes qi,¢qo, ..., qm. Sup-
pose further than we have a cost model, K, which gives
us K;(z), the cost of inserting note z into the query se-
quence, K 4(z), the cost of deleting note « from the target
sequence, and K, (x,y) is the cost of matching the note
2 in the target to the note y in the query. We can then nd
the lowest cost alignment? with the following recursion:

align(i, j, t,q) =

min ¢ K;(g;) + align(é,j + 1,t,q) 4
Kalt,) +align(i + 1,j,t, q)

in which the base case is the end of one or both se-
quences. With dynamic programming, we can construct a
straightforward, ef cient solution. An example® of two
aligned sequences is shown in Figure 2. We note that
K completely speci es the free parameters for this algo-
rithm. For notational convenience, we de ne align g (t,q)
to be the best alignment of t and q with the cost model
K. We also de ne K (ag,q) to be the cost of some given
alignment a of t and q (as in Figure 2). Finally, we de ne
K(t,q) as the lowest cost alignment of t and q given the
cost model K. To illustrate this notation, consider that, if
we use K as the cost model in Equation 4:

K(t,q) = align(1,1,t,q) = K(aligng(t,q)) (5

This may seem like many different ways of saying the
same thing, but these notational conveniences will gain
more utility in the following sections.

i i d m d m
- - C A B I
b R - A - I

z = B

Figure 2: A Lexicographical Example of Sequential
Alignment.

With a few modi cations to this recursion, we are able
toignore pre xes or suf xes as we see t. There are many
variations on this basic theme [10, 11, 12], but all are de-
pendent on nding a cost model that can effectively distin-
guish the correct target from amongst the incorrect ones.

*Notice that we have switched from finding “high scoring”
targets to “low cost” targets. This contradicts Equation 2. The
reader will please forgive the inconsistency

3With thanks to [10].

Although parameters can often be estimated by hand,
it would be more useful and practical to estimate these
parameters from data. One common method is to con-
struct a table containing each possible note value for K;
and K ; and a table containing the cross product of all pos-
sible note values for K,,. If we are then given a series of
training alignments (of the form of Figure 2). Then we
can simply count the number of times a note is inserted,
deleted, or replaced with another note, use these counts
to determine probabilities, and use the log probabilities as
edit costs [13].

The problem here, as mentioned in [2], is that these
tables are so large in this domain that learning them from
data becomes intractable. In fact, since both the pitch and
the duration of a note are real-valued, it seems we should
use a learning algorithm that is able to handle such a repre-
sentation. A table-based estimate, in other words, may be
the wrong hypothesis space for the function we are trying
to approximate.

Are there other forms of machine learning that can be
used in this context? We turn our attention to this in the
next section.

2.2 Binary Classification

To help us learn cost models, we will utilize learn-
ing algorithms for binary classi cation. A binary clas-
si cation problem can be stated as a series of duples
{(x1,11), (X2,92), -, (Xn,¥yn)}. In general, x; is a
vector drawn from some input space X, and y; €
{41, —1} or {positive, negative} is the class label of x;.
The goal is to learn a function that maps all possi-
ble vectors in the input space, even the ones not seen
by the learning algorithm, to their correct class la-
bel. Formally, if L is the learning algorithm, and
T = {(Xlayl)a (X23y2)a ey (Xnvyn)} is the training
data then L(T') outputs a hypothesis h : X — {+1,—1}.

Alternatively, we can modify most learning algorithms
so that we get a probability of the class label rather than
the label as output. Our hypotheses will now be of the
form h : X — [0, 1], where a value approaching zero in-
dicates with high probability that the class is negative and
a value approaching one indicates the same for the posi-
tive class. This is the variant we will use in the sections
below.

There are many choices for L. Among them are neural
network learners, decision tree learners, and perceptron
learners. This is an extremely well-studied problem and
can be found in many places in the literature [14]. It is
hoped that we can bring some of this knowledge to bear
on our current problem.

3 ALIGNMENT EVALUATION VIA
BINARY CLASSIFIERS

We now deal with some of the dif culties of learning in
this context. Recent attempts at this problem [15] have en-
joyed success by formulating the problem discrimatively
as opposed to generatively. In our context, this means to
learn the costs with both the correct and incorrect targets
in mind. The following subsections outline the method

formally.

3.1 The Algorithm

Our discriminative approach is as follows: We take as
training data a number of alignments, some of which align
a query to a correct target song and some of which align
a query to an low-cost, incorrect target song (that is, the
best-scoring incorrect target). Each event in both the cor-
rect and incorrect alignments (insert, delete, or match) is
placed into a set containing all of the events of that type,
so that all of the training data is nally in three sets, one
for each type of event. Each event is labeled as positive if
it came from an alignment with a correct target and nega-
tive if it came from an incorrect target.

In each of these sets, we have then a number of pos-
itive and negative examples. This is then a binary clas-
si cation problem. The classi er learned from each of
these sets will output the probability that a given event
came from an alignment of a query with the correct tar-
get. This exactly de nes our learned cost model K© with
the three learned classi ers as the functions K iL, K dL, and
KL A schematic of the algorithm is shown in Figure 3
and psudeocode is given as Algorithm 1.

Query =*14 4
Correct target (p)

(@44

Incorrect Target (n)
4 3 21 -
1 -4 -4

Event | Class Event | Class Event | Class
) 4 n 2 P
3 4 P 3 n
4 4 n 1 In
4 1 n
2 4 n
Learn Classifier
‘ Learn Classifier
Learn Classifier l
“Match” Cost “Insert” Cost “Delete” Cost
Function Function Function

Figure 3: A schematic of our learning process. The ’class’
column denotes whether the event came from a correct (p)
or incorrect (n) alignment.

The astute reader, observing Algorithm 1, will note
that we use a hand-built model to construct the alignment
of target and query both in training and after training.
Why not just use the learned model to construct the align-
ment? The reasons here are two-fold:

1. To reduce running time. If we have a target of
length m notes and a query of length n notes, it takes
O(mn) calls to the model to align the two targets
and at most O(m + n) calls to the model to eval-
uate a given alignment. The hand-built model we
use here requires only a tiny bit of computation per
call, whereas the learned model requires values to be
propagated through a learned model (e.g., a neural
network), which takes considerably longer. Using
the simple model for alignment and the complex one

247

Algorithm 1 The Binary Classi cation Alignment Algo-
rithm

1: Given: A query set Q, a target set 7, a cost model

Ky, and a learning algorithm L

2: Initialize training sets I = D = M = {}
3: forall q; € Q do
4 ap — aligng (C(ai), qi)
5. tp e argmaxyso(q,) Ko(t, qi)
6: Ap — ahgnKo (tn7 q’L)
7.
8
9

for all events a; € a, do
Label a; positive
Insert a; into I, D, or M if it is an insertion,
deletion, or match event, respectively.
10: end for
11: for all events a; € a, do
12: Label a; negative
13: Insert a; into I, D, or M if it is an insertion,
deletion, or match event, respectively.
14: end for
15: end for
16: K — L(I)
17 K i — L(D)
18: K, — L(M)
The nal learned scoring function F' is:

F(t,q) = K*(aligng, (t,q))

for evaluation considerably reduces running time, es-
pecially if we have multiple models as we will see
below.

2. To reduce the difficulty of the learning problem.
Learning in this domain remains dif cult, but train-
ing and testing on only high scoring alignments con-
structed by a reasonable model trims the size of the
space, so we only need focus on learning useful con-
cepts that the base model has missed, rather than on
aligning sequences in general.

In cases where the learning algorithm is able learn a
model that will align correctly and quickly, the hand-built
model may be omitted, and random alignments may be
used for training. In this application, however, using the
hand-built model to align the sequences helps a great deal
with performance and speed.

3.2 Particularizing the Algorithm for
Query-by-humming

An obvious advantage of this algorithm over table-based
methods is that we are not constrained by the number of
discrete values that our notes can take. This is handy be-
cause to specify a song in terms of its notes, one needs at
least two real values per note, a pitch and a duration. This
means our characters or symbols in the sequence will
be vectors of real values rather than discrete characters
as in Figure 3. Learners for binary classi cation prob-
lems are by and large comfortable with real-values, unlike
the table-based method described above, where real val-
ues must in general be rounded or binned .

248

In what follows below, we assume that notes are
vector-valued, containing a component for both the pitch,
sP, and the duration, s2, of an event s, so a song s is rep-
resented by a series of duples:

5= {(va Stli)v (557 Sg)v RRE) (S\Z)S|7s|ds\)}

Furthermore, the pitch and duration of the starting
event is often considered immaterial so long as the proper
relative pitches and durations are maintained?:. Thus, we
instead represent the song using pitch differences and du-
ration ratios:

s ={(s3,57), (3, 85), -, (sap s} (6)
where

sf:sfﬂ—sfandsf:s’—;l @)
S;

We make two nal modi cations to the data before
passing it to the learning algorithm: We take the log of
the duration ratio, as recommended in [17] and for match
events, rather than passing in the target and query symbols
directly, we pass in the query symbol and the component-
wise difference between the two. Table 1 summarizes the
features used in training the learned model.

10 - Pitch difference for target event
log(t") - Log duration ratio for target event
q° - Pitch difference for query event
log(¢") - Log duration ratio for query event

N

A
Training set for K,,, = {q°,log(q"), A% A"}
Training set for K; = {¢°,log(q")}
Training set for Ky = {t° log(t")}

Table 1: Table of Features used in Training for the Query-
by-humming Problem

4 BOOSTING FOR ACCURATE
SELECTION

We have seen then, that if we have a general base model
for sequence alignment, then we can use it to learn a new
model. However, as we will see in the results section,
the learned model performs slightly worse than the base
model. A quick scan of the output from these models re-
veals that they are not making the same mistakes, and that
we may reap bene ts if we are somehow able to combine
the two.

Furthermore, one could view the algorithm discussed
in the previous section as an iterative one. That is, we use
the base model to generate the training data for the learn-
ing process, learn a new model, then use the learned model
to generate new training data for the next iteration. The
goal is to train a number of weak models, each trained on
the mistakes of models in previous iterations. The hope is
that these models will combine to give us accuracy greater
than any single model alone.

“See [16] for an interesting dissenting opinion.

Both of these intuitions, iterative training and weak
model combination, are captured in an algorithm known
as adaboost [18], the adaptive boosting algorithm. Its
general form is given in Algorithm 2, and we see the gen-
eral ideas expressed above. We rst learn a model, then

weight the model based on its performance on the train-
ing data. We would like the weight, « to increase as the
model does better. After learning the model we update a
distribution over the training data: Training examples that
are misclassi ed get greater weight in the next iteration.
These weights are used to force the learning algorithm to
focus its attention on the mistakes of previous iterations.
We then learn a new model and repeat the process.

Algorithm 2 The general form of the adaptive boosting
algorithm.

1: Given: A training set S = {(x1,41), .-, (Xn,Yn)}
2: Initialize training set weights D1 (j) = +

3: Select learning algorithm, L

4: fori=1,...,T do

5: Get weak model h; — L(S) using weights D;
6: Geterror ¢; of hy on S

7 Set v = % In %

8 Update the distribution:

D;(j) exp(—ayyjhi(z;))

Di1(j) = 2

where Z; normalizes D to be a distribution
9: end for

Output the nal hypothesis, H:

H(x) = sign (Z a;hy (x))

The version of adaboost given in Algorithm 2 is used
for simple binary classi cation problems with 0-1 loss. In
the query-by-humming problem, if we have a database of
targets of size n, we have an n-class problem. In addition,
the loss function is not 0-1 . Our models are able to pro-
duce a ranking of the targets based on the query, and we
would like to penalize models based on how low the cor-
rect target is ranked. For a cost model, K, we then de ne
the reasonable loss function 1 — %
rank i (q,7)

Using these guidelines, we modify the adaptive boost-
ing algorithm, given as Algorithm 3. The choice of « in
the original algorithm is useful only for binary classi ca-
tion problems and will not work for us here®>. We choose
« to be the mean reciprocal rank or MRR as used in [3].
This is closely related to the loss function de ned above.
The update for the distribution over the training set is also
tailored to binary problems. We again make a modi ca-
tion so that our loss function is re ected in the update.
The nal model is simply a weighted combination of the
models learned in each iteration.

5This is because it uses the fact that a consistently wrong
model can be given a negative weight and the wrong predictions
made to be right. In our application, there is no such notion of a
“mirror image” model

Algorithm 3 The adaptive boosting algorithm applied to
learning cost models for alignment

1: Given: A query set Q = {q1,...,q,},atargetset 7,
and a base model K

2: Select learning algorithm, L

3: Initialize training set weights D1 (j) = 1

4: fori=1,...,T do

5. Learn weak cost model K; from 7 and Q using

Algorithm 1, base model 1K 0, and weights D;

)

_ 1
Seta = n quEQ rankg, (qx,T)
Update the distribution:

~

D) ep (% ~ sertarm)
Zy

Diy1(j) =

where Z; normalizes D to be a distribution.
8: end for

Output the boosted cost model, K *:

T

K*(t,q) = Z a; K (aligng (t,q))
i=0

With these changes, we should be able to combine the
weak models learned into a single, stronger model. This
we will attempt to verify experimentally.

S EXPERIMENTAL SETUP

As data for our experiment, we use a body of sung queries
collected by the author. There are a total of 50 singers and
12 different songs. The singers were we query over a to-
tal of 12 songs, with each singer choosing the four they
were most familiar with and singing a small, prede ned
excerpt from each one. For training we split the data on
both singer and song, so the algorithm is tested on singers
and songs it has never heard before. This results in a
training set of 100 queries over 6 songs and 15 singers
and a test set of 321 queries over 6 songs 35 singers. The
singers in the experiments were generally amateur singers
with experience in a college or church choir but not pro-
fessionally. We imagine that this demographic will be the
most likely users of a nished query-by-humming system.

For the target set, we also split the data, using a 421
song database for training and a 2000 song database for
testing. We use the 2000 songs from the test database to
simulate databases of smaller target sets by drawing ran-
domly from these 2000 songs. For each simulated size
we draw 10 random databases from our base set of 2000
and average the results. The 2421 target songs as well as
the 12 query songs are taken from the Digital Tradition
[8] database of monophonic folk melodies.

Our base, hand-built model is the interval matching
model constructed in [3] and shown to be state-of-the-art.
The learned and boosted models are constructed using the
methods outlined in previous sections. The binary clas-
si er we use is a neural network as implemented in [19]
with the default parameters. No tuning was done. The
type of alignment used here is the local type de ned in

249

[10], where we ignore pre xes and suf xes in the target
but not the query. That is, the algorithm assumes that the
query is contained whole in the correct target.

6 RESULTS

To evaluate our models we plot MRR as the size of the
target set size increases in Figure 4 and the percentage
of songs ranked rst as target set size increases in Figure
5. We would expect, as the target set grows, that both
of these measures will decrease on all models, but that
better models will show less of a decrease. For reference,
consult [3].

0.95

\ Learned Model

T T T
— Hand-built Model
0.9k — — Boosted Model (4 lterations)

0.55 1

0.5

I I I I I I I I I |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Target Set Size

Figure 4: Mean reciprocal rank versus increasing target
set size.

0.9 T T T

\ — Hand-built Model
\ Learned Model
085\ — — Boosted Model (4 lterations)

Probability of Correct Target Ranked First

I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.4 L L L I

Target Set Size

Figure 5: Percentage of queries returning the correct target
ranked rst against increasing target set size.

As we can see from the plots, the hand-built interval
matching model outperforms the model learned in the rst
iteration, but the boosted model is able to outperform both
by a signi cant margin, returning the correct target more
than 10% more often than the hand-built model.

250

We also note that there are vast differences in perfor-
mance between this test of the standard interval model and
previous tests. In particular, this test gives a much bet-
ter MRR than in [3]. We echo the comments made there
about results varying wildly with the query set used. We
imagine this is due to the fact that the subjects for this test
were told exactly what to sing, and were reminded of the
tune before singing. Thus, the queries were likely better
renderings of the target than was the case in [3].

In Table 2 we show the MRR for a target set size of
2000 for the hand-built model and for each iteration of the
boosting algorithm. We see that the boosting algorithm
converges very quickly with our training data.

Model MRR
Base Model 0.598
Learned Model | 0.510
Iteration 1 0.698
Iteration 2 0.683
Iteration 3 0.705
Iteration 4 0.698

Table 2: MRR at a target set size of 2000 for all models

Finally, recent comparisons to the hand-built model
used here [3, 2, 6] often involve methods that take sub-
stantially more computation without showing substantial
improvement. We report anecdotally that the difference in
running time between our algorithm and the standard in-
terval matching model is less than a factor of two with no
optimizations.

7 CONCLUSIONS AND FUTURE WORK

We have here outlined a method for constructing a query-
by-humming system that substantially outperforms cur-
rent state-of-the-art methods with a negligible increase
in running time. To accomplish this, we have used a
weak model and a standard binary classi cation algo-
rithm, along with a version of adaptive boosting tailored
to this particular problem.

Some interesting phenomena were observed as we ex-
perimented with various training data. First, as one might
expect, if we train the system on poor queries (where the
target is sung incorrectly), then it does not perform very
well®. If we train on a mix of good queries and poor ones,
then the boosting algorithm tends to ring , alternately
weighting the good and the poor queries heavily, and thus
alternately learning good and poor models.

We also concede that we have abused the boosting for-
malism here in some sense. We have used our hand-built
model, hg as one of our weak models. The boosting algo-
rithm is provably convergent in the limit of in nite itera-
tions, but if we continue to iterate the algorithm, we will
eventually lose the effect of hg, because it is not gener-
ated from the data. Hence we must be careful of over-
iterating the algorithm and select a number of iterations
that compromises between the usefulness of learning ad-
ditional models and the usefulness of the base model. In

®0One might make the comparison to a child with tone deaf
parents if one were so inclined.

this instance, the base model turns out to be useful, cap-
turing some things that the learning process does not. One
can imagine an instance in which the learning process cap-
tures all of the usefulness of the base model. In this case
we would only use the base model for constructing align-
ments and would be free to iterate until convergence.

So we are not tied to the notion of using a hand-built
model as part of the nal model. In fact, we are tied down
in relatively few ways. The notion of boosting can be ap-
plied to any algorithm that is able to learn a model for
selecting sequences based on a set of target-query align-
ments, and there has been much recent work in machine
learning on this subject [20, 21, 15]. If we use the binary
classi cation formalism, we can choose any representa-
tion for notes that suits us, using absolute values of pitch
and time, as in [16] or values for pitch and time relative to
other elements as in [2]. In addition, we can imagine us-
ing subsequences of notes as the symbols of the sequence,
rather than single notes. This corresponds to the idea of
sliding window classification as outlined in [22]. With pa-
rameter tuning, it is highly probable that performance will
increase further still. Preliminary experiments indicate as
much.

Finally, we note that this formalism is not tied to the
query-by-humming problem. This method may be useful
for retrieval of structures other than sequences of notes
(sequences of other types of elements, trees, graphs, etc.).
Future work may entail expanding the ideas outlined in
this paper to other domains.

REFERENCES

[1] Stephen Downie and Prof. Michael Nelson. Eval-
uation of a simple and effective music information
retrival method. In Proc. 23rd International ACM
SIGIR conference on Research and Development in
Information Retrieval, 2000.

[2] Bryan Pardo, William Birmingham, and Jonah
Shifrin. Name that tune: A pilot study in nding
a melody from a sung query. Journal of the Ameri-
can Society for Information Science and Technology,
55(4), 2004.

[3] Roger B. Dannenberg, William P. Birmingham,
George Tzanetakis, Colin Meek, Ning Hu, and
Bryan Pardo. The musart testbed for query-by-
humming evaluation. In Proc. 4th International
Symposium on Music Information Retrieval, 2003.

[4] Naoko Kosugi and Yuichi Nishihara. A practi-
cal query-by-humming system for a large music
database. In Proc. 8th ACM Multimedia Conference,
2000.

[5] Dominic Mazzoni and Roger B. Dannenberg.
Melody matching directly from audio. In Proc. 2nd
Annual International Symposium on Music Informa-
tion Retrieval, 2001.

[6] Colin Meek and William Birmingham. Johnny can’t
sing: A comprehensive error model for sung music
queries. In Proc. 3rd International Symposium on
Music Information Retrieval, 2002.

[7] Paul Boersma. Accurate short-term analysis of the
fundamental frequency and the harmonics-to-noise
ratio of a sampled sound. Proceedings of the Institute
of Phonetic Sciences, 17:97 110, 1993.

[8] The Digital Tradition Folk Music Database.

[9] M. S. Smith and T. F. Waterman. Identi cation of
common molecular subsequence. Journal of Molec-
ular Biology, 147:195 197, 1981.

[10] Colin Meek. Modelling error in query-by-humming
applications. PhD thesis, The University of Michi-
gan, 2004.

[11] Jie Wei. Markov edit distance. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,

26(3):311 321, March 2004.

[12] Marcel Mongeau and David Sankoff. Comparison of
musical sequences. Computers and the Humanities,
24:161 175, 1990.

[13] Richard Durbin, Sean Eddy, Anders Krogh, and
Graeme Mitchison. Biological Sequence Analysis.
Cambridge University Press, 1998.

[14] Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach, chapter 20. Prentice
Hall, second edition, 2003.

[15] Ioannis Tsochantaridis, Thoman Hofmann, Thorsten
Joachims, and Yasemin Altun. Support vector ma-
chine learning for interdependent and structured out-
put spaces. In Proc. 21st International Conference
on Machine Learning, 2004.

[16] Colin Meek and William P. Birmingham. The dan-
gers of parsimony in query-by-humming applica-
tions. In Proc. 4th International Symposium on Mu-
sic Information Retrieval, 2003.

[17] Bryan Pardo and William Birmingham. Encoding
timing information for musical query matching. In
Proc. 3rd International Symposium on Music Infor-
mation Retrieval, 2002.

[18] Robert E. Schapire. The boosting approach to ma-
chine learning: An overview. In MSRI Workshop on
Nonlinear Estimation and Classification, 2002.

[19] Tan H. Witten and Eibe Frank. Data Mining: Practi-
cal Machine Learning Tools with Java Implementa-
tions. Morgan Kaufmann, San Francisco, 2000.

[20] John Lafferty, Andrew McCallum, and Fernando
Pereira. Conditional random elds: Probabilistic
models for segmenting and lebeling sequence data.
In ICML, 2001.

[21] Ben Taskar, Carlos Guestrin, and Daphane Koller.
Max margin markov networks. In NIPS, 2004.

[22] Thomas G. Dietterich. Machine learning for sequen-
tial data: A review. Structural, Syntactic, and Sta-
tistical Pattern Recognition; Lecture Notes in Com-
puter Science, 2396:15 30, 2002.

251

