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ABSTRACT 
A model that calculates similarity of tonal evolution 
among pieces in an audio database is presented. The 
model employs a template based key finding algorithm. 
This algorithm is used in a sliding window fashion to 
obtain a sequence of tonal center estimates that delineate 
the trajectory of tonal evolution in tonal space. A chroma 
based representation is used to capture tonality informa-
tion. Templates are formed from instrument sounds 
weighted according to pitch distribution profiles. For 
each window in the input audio, the chroma based repre-
sentation is interpreted with respect to the precalculated 
templates that serve as attractor points in tonal space. 
This leads to a discretization in both time and tonal 
space making the output representation compact. Local 
and global variations in tempo are accounted for using 
dynamic time warping that employs a special type of 
music theoretical distance measure. Evaluation is given 
in two stages. The first is evaluation of the key finding 
model to assess its performance in key finding for raw 
audio input. The second is based on cross validation 
testing for pieces that have multiple performances in the 
database to determine the success of recall by distance.  
  
Keywords: Tonal similarity, key finding, dynamic time 
warping, tonal space.  

1 INTRODUCTION 
 

In the field of MIR, the importance of time series repre-
sentations is well recognized since listeners can only 
experience music through time. Recently, in this field,  
many methods dealing with similarity of time series have 
been either revisited and reinterpreted or new ap-
proaches have been proposed. These methods focus on 
factors such as efficiency of the representation, algo-
rithm complexity and processing load. Selection of rep-
resentative features and a resulting efficient and effec-

tive representation are important factors in model design. 
This paper, introduces a method for similarity calcula-
tion of an aspect of music cognition: tonal evolution. 
The representation used for tonal evolution is a sequence 
of symbols that enables application of fast and efficient 
string processing algorithms. This can be viewed in con-
trast to other methods dealing with similarity that gener-
ally use rich features and consequently have higher 
processing demands. The method presented here first 
finds a sequence of position estimates in tonal space and 
then uses the time series to calculate similarity by warp-
ing one sequence onto another. 

This paper explores the problem of similarity from a 
tonality standpoint. The method utilizes a template 
based key finding model to estimate the position in to-
nal space at regular intervals throughout a piece. The 
sequence of symbols representing the tonal evolution is 
used in similarity calculations across pieces in a data-
base. In music, this kind of similarity is understood as a 
more abstract and high-level similarity when compared 
to similarity of more direct musical attributes such as 
rhythm or melody. Nevertheless, in the context of West-
ern tonal music the induction of tonality is central to the 
interpretation of music. The compositional process ad-
dresses the interplay between the elements of time and 
pitch inducing the sense of tonality. A tonal center can 
be defined as the most stable pitch in a fragment of mu-
sic sometimes also referred to as the tonic. Tonality is 
ubiquitous and most listeners musically trained or un-
trained can identify the most stable pitch while listening 
to tonal music. Furthermore, this process is continuous 
and remains in action throughout the listening experi-
ence. As a musical work unfolds, the stable pitch might 
change as a result of the music modulating from one key 
into another. In simple terms, the mode of the musical 
scale together and the tonic signify the key of a piece. 
The main key can also be viewed as the global key. Mu-
sical works in the tonal tradition generally start and end 
with the global key, moving through multiple other keys 
throughout the piece. On the other hand, a localized key 
estimate can be viewed as an estimate of the tonal center 
given only a fragment of a larger musical work. In this 
paper, tonal evolution is represented by a sequence of 
symbols obtained by the application of a localized key 
finding model on adjacent fragments of music.  

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full 
citation on the first page. 
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To estimate the key from an audio recording, one 
might look at the beginning or end of the piece and de-
velop heuristics to arrive at a decision. A more compli-
cated problem is the calculation of tonality evolution 
over time which has been addressed in a limited number 
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of works. This comes closer to harmonic analysis where 
chords or at least tonal regions need to be identified as 
the piece unfolds. The evolution of the tonal center 
characterizes the piece in an abstract and general way. 
Several levels that would be useful to music information 
retrieval can be identified. First, key finding would 
group an entire database into 12 or 24 classes (or major-
minor). Second, identification of modulations would 
give more information about pieces and lead to a further 
division of the database based on a more detailed repre-
sentation that contains a sequence of keys. Third, and 
most useful level, would extract information regarding 
tonal evolution so as to be used in applications ranging 
from functional analysis to segmentation into musical 
sections and even to transcription. 

The methods dealing with similarity that work di-
rectly from audio generally use features with many di-
mensions such as the 12 dimensional chromagram or 
Mel-frequency Cepstral Coefficients. The method pre-
sented here uses an additional step to further reduce the 
dimensionality of the representation prior to similarity 
calculation. 

The organization of the remainder of the paper is as 
follows: Section 2 outlines related work in key finding, 
feature extraction from audio, similarity and time align-
ment. Section 3 explains the procedure for obtaining 
templates which represent attractor points in tonal 
space. Section 4 discusses the determination of localized 
key estimates which are found with respect to the tem-
plates. The result of this stage is a sequence of symbols 
representing a trajectory in tonal space. Section 5 ex-
plains the alignment process that deals with tempo dif-
ferences between the pieces being compared. An 
evaluation of the method is given in Section 6. 

2 RELATED WORK 
In this section an outline of related work in several areas 
is given. A chroma based representation is a compact 
form of spectral representation obtained by a many-to-
one mapping from the short-time spectrum of audio. 
Chroma based representations have been used in key 
finding (İzmirli 2005; Gόmez and Herrera 2004; Pauws 
2004), discovering similarity and repetition in audio 
recordings (Bartsch and Wakefield, 2001) and chord 
segmentation, recognition and alignment in audio (Sheh 
and Ellis, 2003). Fujishima (1999) originally proposed 
the Pitch Class Profile (PCP) for use in chord recogni-
tion. This chroma based spectral representation is 
widely used because it effectively summarizes chroma 
information and harmonic structure in the spectrum us-
ing a manageable number of dimensions. However, the 
mapping is not unique, octave information is ambiguous 
and fine spectral detail is lost as a result of this map-
ping. 

Many approaches to extracting tonal center informa-
tion have been reported in the literature. Leman (1992) 
proposed a method inspired by cognition that uses an 
ear model front-end for determination of tonal context 
and tone centers. İzmirli and Bilgen (1996) reported on 

a model that has a pitch-class note recognition front-end 
followed by a stage that consists of leaky integrators to 
model recency effects and decay. In this model, as mu-
sical events are encountered, leaky integrators are 
charged according to respective strengths of pitch 
events. Huron and Parncutt (1993) use a psychoacoustic 
model of pitch perception that employs echoic memory 
and pitch salience to model key perception. Chuan and 
Chew's model (2005) estimates pitch strength using 
peaks in the spectrum which are then used by the Spiral 
Array model to estimate key. Purwins, Blankertz and 
Obermayer (2001) proposed a model for tonal center 
and modulation tracking which collapses the spectrum 
into constant Q (CQ) profiles and calculates distances 
using a fuzzy distance measure between the profiles and 
reference CQ sets. Gόmez and Herrera (2004) presented 
a comparison of cognition-inspired models based on 
Krumhansl's method and feature-based machine learn-
ing methods for key finding from polyphonic audio. 
One of the features they use is the Harmonic Pitch Class 
Profile which is a specialized version of PCP that uses 
the peaks in the spectrum. Pauws' model (2004) uses an 
auditory perception inspired front-end to compute a 
chromagram which is then used to compute the correla-
tions with the Krumhansl and Kessler profiles (1982). 
Zhu, Kankanhalli and Gao (2005) first find the tuning 
frequency of the input, perform partial tracking, apply 
consonance filtering, obtain a pitch profile, and deter-
mine the scale root and key separately.  

Similarity within a single audio recording has been 
subject to much research. Finding thumbnails or repeat-
ing sections are of interest for systems that perform 
automatic summarization. Dannenberg and Hu (2002) 
describe and compare three methods that find repetition 
of segments within musical pieces. Cooper and Foote 
(2002) describe a method to determine the most repre-
sentative segment in a piece by maximizing the average 
segment similarity over the piece. Bartsch and Wake-
field (2001) perform similarity analysis on chroma 
based representations of audio to identify chorus sec-
tions. İzmirli (2002) uses spectra of diatonic collections, 
as references, to calculate tonal context vectors indicat-
ing relative strengths of tonal centers which in turn are 
used to calculate similarity of tonal evolution in frag-
ments within and across audio recordings in a database.   

Work related to processing of time series information 
generally deals with time alignment, segmentation and 
sequence recognition. Hu, Dannenberg and Tzanetakis 
(2003) describe a method to align polyphonic audio to 
symbolic score information. They use a chroma based 
representation and align the chroma vectors obtained 
from the query of the polyphonic input to those obtained 
from symbolic information. Work by Sheh and Ellis 
(2003) demonstrates chord recognition from music re-
cordings. They use an HMM model for sequence recog-
nition and report that PCP features are more effective 
than cepstral coefficients. Although the octave is usually 
divided into 12 they use a higher resolution PCP by 
dividing the octave into 24. Yoshioka et al. (2004) re-
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port on a system for chord recognition that simultane-
ously detects chords and chord boundaries in the input 
audio. Adams et al. (2004) describe dynamic alignment 
procedures for various time series representations of 
sung queries. 

3 TEMPLATES 
A template based key finding model is described in Iz-
mirli (2005). This model uses short fragments from the 
beginnings of polyphonic audio recordings that contain 
classical music including symphonic, vocal, solo and 
ensemble recordings. The model has been found to pro-
duce 86% correct labelling of the key using a database 
of 85 recordings. In the mentioned work, various spec-
tral representations and profiles are compared with one 
another. The model operates on the assumption that a 
piece starts in the key that appears in its label designated 
by the composer. Given the viability of the model, here, 
we choose to utilize it in a sliding window fashion to 
estimate the position in tonal space at a given time in the 
piece. The model that results in the best performance 
will be described here. This will constitute the basis for 
the estimation of position in tonal space. In this paper 
however, the model is used with a different parameter 
selection to make it suitable for the current purpose. 

Pitch distribution profiles may be used to represent 
tonal hierarchies in music. Krumhansl (1990) suggested 
that tonal hierarchies for Western tonal music could be 
represented by the probe tone profiles found experimen-
tally in an earlier study (Krumhansl and Kessler, 1982). 
Her method of key finding is based on the assumption 
that a pattern matching mechanism between the tonal 
hierarchies and the distribution of pitches in a musical 
piece model the way listeners arrive at a sense of key. 
Many key finding models rely on this assumption and 
several extensions have been proposed. In one such 
extension, beside other additions, Temperley (2001) has 
proposed a pitch distribution profile. We utilize this 
profile in combination with a diatonic profile as this 
combination results in the best performance. Profiles are 
incorporated into the calculation of templates to ap-
proximate the distribution of pitches in the spectrum and 
the resulting chroma representation. The base profile for 
a reference key (A in this case) has 12 elements, repre-
sents weights of individual chroma values and is used to 
model pitch distribution for that key. Given that this 
distribution is invariant under transposition,  the profiles 
for all other keys are obtained by rotating this base pro-
file.  
Templates are obtained using recordings from mono-
phonic instrument sounds. These sounds, for example,  
could be piano sounds from the McGill Master Samples  
or from the University of Iowa Musical Instrument 
Samples. Templates represent a prototype spectrum ac-
cording to a distribution determined by the chosen pro-
file. The sounds are low pass filtered and then sampled 
at 5512.5 Hz. The analysis is carried out using 50% 
overlapping 2048-point FFTs with a Hann window. 
Analysis frequency range is taken to be from 50Hz to 

2000 Hz.  The spectrum of an individual monophonic 
sound with index i, Xi, is computed by averaging win-
dows that have significant energy over the duration of 
each sound and then scaling the average spectrum by its 
mean value. Here, i=0 refers to the note A in the lowest 
octave, i=1 refers to Bb a semitone higher etc. R is the 
total number of notes within the instrument’s pitch 
range used in the calculation of the templates.  
 
 

 
Chroma 

Diatonic 
Major 

DM

Diatonic 
Minor 

Dm

Temperley 
Major 

TM

Temperley 
Minor 

Tm

0 1 1 5.0 5.0 
1 0 0 2.0 2.0 
2 1 1 3.5 3.5 
3 0 1 2.0 4.5 
4 1 0 4.5 2.0 
5 1 1 4.0 4.0 
6 0 0 2.0 2.0 
7 1 1 4.5 4.5 
8 0 1 2.0 3.5 
9 1 0 3.5 2.0 
10 0 0 1.5 1.5 
11 1 1 4.0 4.0 

 

Table 1. Two profiles used in this study: major 
and minor profiles for Temperley and diatonic. 

 
Using the spectra obtained for each individual note, 

templates are calculated by weighted sums. A template 
for a certain mode and chroma value is the sum of Xi 
weighted by the profile element that has the correspond-
ing chroma value. A template is calculated for each 
mode-chroma pair resulting in a total of 24 templates as 
given in equation (1). The first 12 are major, starting 
from reference chroma ‘A’, and last 12 are minor.   
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Xi denotes the averaged amplitude spectra of the sound 
corresponding to note i. Pe(k) is the profile weight as 
given in Table 1, where e denotes the mode (M:major or 
m:minor) and k denotes the chroma. In this work, the 
profile is given by the product of the diatonic and Tem-
perley profiles: Pe(k)=De(k)Te(k). Ψ is a function that 
maps the spectrum into chroma bins. The mapping is 
performed by dividing the analysis frequency range into 
1/12th octave regions with respect to the reference 
A=440 Hz. Each chroma element in the template is 
found by a summation of the weighted magnitudes of the 
FFT bins over all regions that have the same chroma 
value. 
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4 ESTIMATION OF POSITION IN 
TONAL SPACE 

Templates can be viewed as attractor or focal points in 
tonal space that represent the ideal locations of tonal 
centers. Once the profiles and scales are chosen and 
templates are formed, they become part of the model to 
which incoming information is compared. Summary 
vectors are obtained from the raw audio input using the 
same method to obtain the templates with two excep-
tions: the first is that each summary vector is obtained 
from a window of fixed duration (instead of the entire 
sound) as the window is slid through the entire audio 
input. Note that this window spans a much larger dura-
tion compared to the FFT window. In this work a win-
dow size of 2.5 seconds has been utilized. This has been 
determined experimentally to balance the averaging 
over time and sluggishness of the estimation. A longer 
window covers more notes and tends to be more stable 
in the estimation whereas a shorter window will make 
the estimation more adaptive. The window is noncausal 
and has a time registration point at the center. The hop 
size is 35 percent of window length. The second differ-
ence is that at each hop a new summary vector is calcu-
lated and compared to the templates as described below.  

For each window the position in tonal space is esti-
mated by computing correlation coefficients between 
the summary vector and all 24 spectral templates, and 
picking the one with the maximum value. The index of 
the template with the maximum correlation is then re-
corded for that time step. For the entire audio, a se-
quence of indices which fall in the range of 1-24 are 
calculated and recorded. This results in a sequence rep-
resented by Sk=(s1,k,s2,k,s3,k,...sN,k) where sn,k represents 
the mode and chroma value (tonic) estimate for the n’th 
window in audio file k.  

5 ALIGNMENT 
The extracted sequence of indices Sk, represents a sam-
pling of the tonal evolution in both time and tonal space. 
The resulting discrete representation can be used to effi-
ciently compare the similarity of tonal evolution between 
pieces. Given two performances of the same piece, direct 
similarity comparison using, for example, the Euclidean 
distance is not possible due to tempo differences in the 
performances that lead to misalignment of the two se-
quences. For this reason, Euclidean distance and similar 
distance measures that do not allow warping of the 
source sequence toward the target sequence fail to serve 
as viable indicators of similarity. We therefore use dy-
namic time warping to reduce the effects of local tempo 
differences between performances.     

As explained above, the duration of analysis used to  
determine elements of S is on the order of seconds. If 
the model had been operating with a shorter window, 
say at the note level, then grouping would have been 
necessary, for example, to convert arpeggios into chords 
or obtain roman numeral analysis from fixed size time 
spans. At this level of analysis each symbol is calculated 

from a window that spans a sizeable duration which 
performs the necessary averaging. Therefore, we can 
use a method that assumes monotonic unfolding of both 
sequences to find an optimal warping path and a result-
ing distance. 

The sequence S consists of elements that represent 
mode and tonic information. This means that the dy-
namic time warping algorithm cannot use a geometric 
distance measure directly on the values themselves. As 
such, an absolute value of the difference could not be 
used due to the more complicated distance relationships 
between the indices. For example, index 4 represents C 
major and index 5 represents Db major (or C# major). 
Although the numerical difference between these two 
keys is 1 the distance in tonal space should be one of the 
maximal distances. Even using a simple circle-of-fifths 
distance Db should be 5 steps away while F would be 1 
step away from C. To perform the dynamic time warp-
ing a distance measure needs to be defined that models 
distances in tonal space. Lerdahl’s regional space 
(2001) is a tonal space in which these distances can be 
calculated. The regional space is created by combining 
the circle-of-fifths with the parallel and relative major-
minor cycle. Lerdahl defines this generalized tonal pitch 
space to calculate distances between chords when 
pitches are either chosen from a single diatonic collec-
tion or from a different one as a result of a shift in the 
diatonic set. In this work we approximate the tonal dis-
tance between elements in the sequence S using Ler-
dahl’s regional distance. Table 2 shows the distances in 
tabular form as given in (Lerdahl, 2001). Readers are 
referred to the original source for the geometrical repre-
sentation and history of tonal pitch space. 

 
 

Region Distance Region Distance 
1 0 13 7 
2 23 14 23 
3 14 15 10 
4 14 16 21 
5 16 17 9 
6 7 18 14 
7 30 19 21 
8 7 20 14 
9 16 21 23 

10 14 22 7 
11 14 23 21 
12 23 24 16 

 

Table 2. Lerdahl’s regional distances. Regions are 
given in semitones with respect to region 1.  

 
Given two sequences Sk and Sm we find the warping 

path R=(r1, r2, r3,…rN) with N being the length of the 
path and rn=(i,j) holding the association between ele-
ment i in sequence Sk and element j in sequence Sm. 
Dynamic time warping is implemented using the recur-
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sion given in Equation 2. The conventional path con-
straint that chooses between a single step of the diago-
nal, vertical or horizontal moves was initially tested. 
This led to many successive vertical or horizontal 
moves in the optimal path when the sequences were 
uncorrelated. Therefore, another path constraint was 
used to prevent two non-diagonal moves to occur in 
sequence. 

⎪
⎩

⎪
⎨

⎧

−+−−
−+−−

−−
+=

)j,1i(d)1j,2i(D
)1j,i(d)2j,1i(D

)1j,1i(D
min)j,i(d)j,i(D         (2) 

D is the global distance up to the point in the recur-
sion, with D(1,1)=d(1,1) as the initial condition. d(i,j) is 
Lerdahl’s distance as given in Table 2 between element 
i in sequence Sk and element j in sequence Sm. After the 
dynamic programming algorithm is run, the minimum 
global distance found is divided by the length of the 
trace-back path to eliminate the dependence on duration 
of the recordings. Although the local constraint given in 
Equation 2 can be interpreted as a global constraint that 
prevents some points in the grid from being reached, 
this constraint does not lead to any speed-up until ex-
plicitly stated as a global constraint and implemented in 
the recursion. We therefore use an Itakura parallelogram 
to prevent extreme warping and to attain speedup.   

6 EVALUATION 
The key finding model described in this paper scored 

86 percent correct labelling on a set of 85 general poly-
phonic audio files containing short fragments of classi-
cal music recordings. The fragments were taken from 
the beginnings of audio recordings that contained sym-
phonic, vocal, solo and ensemble music. A single win-
dow of duration 7.5 seconds was used. The works in the 
database collection were chosen to approximately have 
uniform distribution across the 24 keys. The key label-
ling in the titles of the pieces were used as ground truth. 
The results showed that the output of the key finding 
model was able to produce a good estimate of the key in 
a fragment of audio and could be used as a front-end to 
higher level processing. 

This database was composed of the beginnings of the 
pieces and did not contain performances of the same 
piece by different performers. Each file contained ap-
proximately 1 minute into the piece. Next, different per-
formances of 5 pieces that were already in the database 
were recorded and added to the collection. All 5 queries 
using the new pieces returned the correct files as being 
most similar.  

Next another database of 125 recordings of Chopin 
Mazurkas by Vladimir Ashkenazy, Ignaz Friedman, 
Arthur Rubinstein, Vladimir Sofronitsky and Jean-Marc 
Luisada were used (some historical recordings were 
very noisy.) Only 12 of these recordings were unique 
and the remaining were all played by multiple pianists. 
The sliding window key finding model and the dynamic 
time warping algorithm were tested using this set. Cross 
validation was applied by using each piece as a query 

and testing it against the rest of the database. For this, a 
similarity matrix, M, was constructed based on the 
minimum cost path found by the dynamic time warping 
algorithm between all pairs of recordings. The diagonal 
elements were not calculated and were assigned large 
values to prevent self matches. The most similar tonal 
evolution for a piece with index k, was given by the 
index of the minimum element in row k in matrix M. 

The first measure of performance was the retrieval 
accuracy of the most similar item for a piece. If in re-
sponse to a query, the piece with the minimum distance 
to that query had the same name then it was considered 
a successful retrieval. The measure was calculated as the 
sum of all successful recalls divided by the total number 
of pieces that had multiple versions. For the 125 pieces 
this measure yielded 88.8%. The second measure 
looked for a successful retrieval in the first two similar 
pieces. That is, two pieces with the smallest distances to 
the query were checked to see if any one of them was a 
successful retrieval. Again, only pieces that had multi-
ple versions were considered. This measure yielded 
100%. A third measure was used to understand the 
overall performance by calculating the average ratio of 
all successful recalls in the top 5 to the possible success-
ful recalls. For example, if a piece had 4 different ver-
sions and only 3 were retrieved in the first 5 then the 
ratio would be 3/4. The ratios for all pieces were aver-
aged. This yielded 92.5%.    

7 CONCLUSIONS 
The method presented here has been shown to pro-

duce an efficient representation of tonal evolution in the 
form of a time series. The time series is a one-
dimensional sequence of symbols representing tonal 
centers in tonal space at discrete points in time. A slid-
ing window version of a key finding model has been 
shown to work in this context with encouraging results. 
The alignment of the sequences obtained from re-
cordings in the database are performed using dynamic 
time warping with a tonal space distance measure. To 
demonstrate the effectiveness of this representation in 
finding a piece that has the most similar tonal evolution 
in a database, a similarity matrix is constructed. Finding 
the most similar N pieces is a matter of finding the N 
smallest distances in a row of the similarity matrix. The 
resulting performance indicates that the method shows 
potential for use in MIR applications. 

The key finding model is not meant to be employed 
as a music analysis tool such as a chord recognizer. It 
should be regarded as a tractable approach to tonal evo-
lution modeling and one that captures the essential gist 
of tonal structure of a musical work as it unfolds over 
time. The model employs a structural approach to tonal-
ity by operating solely on pitch information, disregard-
ing note order and only indirectly using information 
relating to time structure of the input. For future work, 
incorporating time structure will be considered. Of par-
ticular interest is finding the longest common sequences 
within elements in the database. This will serve to per-
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form intelligent segmentations and find repetitions. An-
other direction will be to adapt the method to use a rela-
tive representation to account for transpositions. 
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