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ABSTRACT
Unlike fixed-pitch instruments such as the piano, human
singing can stray from a target pitch by as much as a
semitone while still being perceived as a single fixed note.
This paper presents a study of the difference between tar-
get pitch and actualized pitch in natural singing. A set
of 50 subjects singing the same melody and lyric is used
to compare utterance styles. An algorithm for alignment
of idealized template pitch tracks to measured frequency
tracks is presented. Specific examples are discussed, and
generalizations are made with respect to the types of devi-
ations typical in human singing. Demographics, including
the skill of the singer, are presented and discussed in the
context of the pitch track deviation from the ideal.

Keywords: Singing, melody alignment, ornamentation,
pitch track, vibrato.

1 INTRODUCTION
Musical query systems are designed with the expectation
that the singer will know they are making a query, and
therefore consciously or subconsciously regularize their
singing, reducing the impact of ornamentation like vi-
brato and rubato which have the tendency to make melody
recognition very difficult. This paper is concerned with
so-called “natural” singing, where the singer is not specif-
ically attempting to develop a query. Even when these or-
namentations are so extreme that the target melody may be
unrecognizable by automated methods, human perception
is capable of regularizing the pitch and timing to identify
the melody.

Human perception of singing is very forgiving, con-
sidering that the pitch track of an average non-expert
singer is far from the ideal sequence of pitches intended
by the singer or heard buy the listener. Trained singers
achieve target pitches much more rapidly and accurately
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than untrained singers, and the vibrato is more easily mod-
eled by an idealized sinusoid, however, the amplitude of
such oscillation is greatly increased, sometimes to well
beyond a semitone. Rossignol et al. (1999) have shown
how to detect and model vibrato in the context of musical
pitch, but when the musician is not expert at controlling
the vibrato, the resulting waveform is not well-formed and
while it still sounds vibrato-like, it no longer fits with a
reasonable vibrato model. Section 5.2 presents examples
of utterances made by trained and untrained singers, with
an examination of the pitch deviation for each.

Current query-by-humming systems have several ad-
vantages, perhaps subconscious, over the average human
listener in this regard. In the extreme, many systems are
designed to operate on idealized pitch tracks, either by
using fixed-pitch instruments or variable-pitched instru-
ments played by experts. Also, the users of these sys-
tems often know that they are making a musical query,
and so sometimes try to make their musical utterances
as smooth, rhythmic and “correct” as possible. Amateur
singers, when just singing for fun or without intent, often
generate less accurate pitch tracks, aiming high for a note
and compensating later, or accidentally switching keys in
the middle of the song. Even with this “messy” input, as
with so many other cognitive tasks, the untrained listener
can easily and accurately identify familiar melodies.

It is the pitch track of the utterance which seems to
hold the majority of melodic information (Weyde, 2004),
and it is the human brain which seems to be able to filter
out ornamentation, errors and state changes and “lock-in”
to the intended or target set of pitches. This paper will ex-
amine some of these errors, and show some of the typical
deviations from the intended or target pitch sequence.

2 A NATIONAL ANTHEM AND A
RIVER CRUISE

The data used for this study was initially collected to study
the differences between speaking and singing (Gerhard,
2002). 50 subjects were prompted to speak and sing var-
ious lyrics. The utterances thus extracted included inter-
mediate vocalizations like poetry and rap music, as well
as spoken phrases and sung lyrics. This study used two
pairs of utterances from each subject:

1. Please sing the phrase “Row, row, row your boat,
gently down the stream.”
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2. Please speak the phrase “Row, row, row your boat,
gently down the stream.”

3. Please sing the phrase “O Canada, our home and na-
tive land.”

4. Please speak the phrase “O Canada, our home and
native land.”

Having each subject answer all of these prompts en-
sures that all variables are controlled for except the differ-
ences between speaking and singing.

The subjects ranged in experience from self-confessed
novices with little or no musical background or pub-
lic speaking experience, to professional radio voices and
trained opera singers. No pitches were given, and subjects
sang in a number of keys. Some subjects sang in more
than one key, and some, unintentionally, sang in multiple
keys across a single melody. Most subjects were already
familiar with the songs, and for those that were not famil-
iar, and example was sung for them. Most subjects sung
the “expected” tune, although one decided to “rap” our
national anthem. The samples were recorded with consis-
tent equipment (speech-recognition microphone and dig-
ital recording software) at 44.1 kHz. This paper contains
results relating to Prompt 3, the first line of the Canadian
national anthem, sung.

3 FEATURE EXTRACTION
The signal processing analysis used for this study con-
centrated on the pitch track of the utterance. Other fea-
tures, such mel-frequency cepstral coefficients, were con-
sidered, but the specific pitch value and change over time
is of particular interest in this work, so a direct estimate of
the fundamental frequency of the signal was extracted and
tracked over the course of the utterance. Not all human
vocal utterance is periodic, however, so the segments of
the utterance with pitch (the voiced segments) must also
be identified.

3.1 Frequency estimation

The YIN frequency estimator (de Cheveigné and Kawa-
hara, 2002) was used to do the initial pitch extraction.
Several readily available frequency estimation algorithms
were examined and evaluated including the algorithms
available in Colea (Loizou, 2003), and YIN was shown
to fit the purpose well. It responds well to human vocal
sounds, and provides a measure of confidence which can
be used as a detector of pitched segments. Each utterance
was analyzed using YIN and the confidence measure was
used to provide an initial segmentation.

3.2 Segment detection: energy and zero-crossing
rate

The measure of confidence from the YIN pitch estima-
tions was combined with a zero-crossing rate fricative de-
tector and a thresholded RMS energy calculation to pro-
duce the initial set of note boundaries. The zero-crossing
rate is a good estimator of the spectral centroid, (Kedem,
1986) and as such can be used to identify voiced segments

of the utterance. The clip is divided into windows of 512
samples each, and the zero-crossing rate is measured for
each window. If the zero-crossing rate is above a previ-
ously set threshold, the window was considered not to be
voiced, and the segment is split at that point.

As a further attempt to identify possible note bound-
aries, the overall energy of the signal was calculated at
each frame (as in the zero-crossing rate) and when the
energy dropped below a pre-defined threshold for a set
period of time, the segment was split at that point. To
avoid noise at the threshold boundary, a hysteresis-like
algorithm was employed, with a pair of thresholds. The
energy would have to cross the lower threshold in the neg-
ative direction to indicate the end of a segment, and cross
the higher threshold in the positive direction to indicate
the beginning of a new segment.

3.3 Discussion

One difficulty with this procedure is that when notes
change without a vocal stop or fricative, the note bound-
ary is not identified. Other standard methods of detecting
note boundaries include pitch track discontinuities, spec-
tral envelope discontinuities, and changes in filter-bank
energy levels. Unfortunately, none of these techniques are
successful all of the time with human singing. Succes-
sive notes can produce identical features, especially if the
singer is singing a series of notes on a single syllable (as
is the case when humming). Singers usually bend pitch
from one note to the next rather than making a discrete
jump, especially if there is no breaking stop or fricative.
If the notes are far apart, a threshold can be set such that
the differential of the pitch track rising above this thresh-
old indicates a note boundary. Singers with even moder-
ate levels of vibrato can easily exceed half a semitone, so
a threshold set high enough to avoid being triggered by
vibrato may miss a valid semitone note transition.

4 ALIGNMENT ALGORITHM
Because the target tune is known a priori in this case, the
alignment algorithm simply finds the best match between
the extracted pitch track and the ideal, or target pitch track.
The sequence of steps in this alignment algorithm is:

1. Identify note boundaries in the frequency estimate of
the utterance under consideration.

2. Quantize to a single pitch for each segment.

3. Convert absolute frequency estimates (Hz) to relative
frequency (cents).

4. Align the segments to the target pitches of the known
melody

Because the target pitch sequence and rhythmic struc-
ture is known, a “best fit” can be achieved. For this pro-
cedure to be useful in a query-by-humming system, the
first three steps are common to all matching tasks and
can therefore be performed once on the incoming signal.
This procedure works best, however, when the number of
pitched segments from the estimation and the target are
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the same. The segmentation problem (breaking the signal
into pitched segments) is quite difficult for natural human
singing. It should be noted at this point that the alignment
algorithm presented here was intended only to allow anal-
ysis of the deviation from target of human singing.

4.1 Note boundary identification

As indicated above, the first estimate of the note bound-
aries is found using a combination of the confidence mea-
sure of YIN, the zero-crossing rate and the energy. This
produces reasonable results but occasionally leaves pitch
segments which should be separated into a series of notes.
If these segments are not separated, the pitch quantization
will be unsuccessful, since contributions from more than
one note will produce erroneous results.

Having a target melody gives the algorithm a target
for the number of pitch segments to expect. If the number
of segments is significantly smaller than that, some seg-
mentation must be done. The slope of the pitch is used
to identify the next reasonable segmentation site. A pair
of parameters are used to find this site: BoundaryLength
and BoundaryThresh. The pitch slope must remain above
BoundaryThresh for the duration BoundaryLength in or-
der to identify a segmentation site. BoundaryLength is dy-
namically adjusted to account for different singing styles.

This method is quick and produces reasonable results
for study, but is not completely robust. SInging style influ-
ences these results greatly, and as will be discussed in Sec-
tion 5, singers tend to glissando or glide from one pitch to
the next, reducing the ability of the algorithm to find a
reasonable segmentation site. Frustratingly, this does not
seem to affect human perception of the same melody—
people can recognize a melody whether or not the singer
is gliding from one pitch to another or jumping as briefly
as possible . Lyrics help the recognition, but even without
lyrics we humans can recognize a tune which deviates in
segment pitches as well as notes and rhythm.

A procedure that has not been implemented in this sys-
tem is re-combination. It would be useful to be able to join
two segments which seem to be the same pitch or belong
to the same note. the difficulty with this is that two seg-
ments with two similar pitches could equally be a single
note erroneously split or a repeated note. Note onset and
offset characteristics have the potential to help solve this
problem.

4.2 Pitch quantization

Once the pitch track has been split into the appropriate
number of segments, each segment is assigned a pitch
which represents the entire segment. There are a num-
ber of ways to assign the overall pitch of the segment, the
simplest of which is to calculate the mean pitch of the seg-
ment. With a segment containing idealized vibrato, the
mean pitch will be at the center of the oscillation and cor-
respond well to the perceived pitch of the segment. Unfor-
tunately, pitch track segments often depart from the ideal-
ized vibrato at the beginning or end of the segment, indi-
cating a transition to another note. The median may be a
more appropriate measure in this case.

4.3 Frequency conversion

The target melody is constructed in terms of the number
of cents from the melodic root note of the key. In the
“O Canada” melody, the root occurs at the third note in
the sequence. All other notes are indicated in cents from
the root, and so the first note in the melody, a major third
up from the root, is indicated at 400 cents. Of course, any
note can be used as the base for this representation, and in-
deed in melodies where the key root is not present, another
note will have to suffice. Since the cent scale is a relative
scale, the starting note is unimportant - all semitone inter-
vals are 100 cents (assuming equal temperament). Equa-
tion 1 shows the conversion from hertz to cents:

Ci = 1200× log2

(
fi

f0

)
(1)

where Ci is the relative pitch of the note in cents, fi is the
frequency of the note in hertz, and f0 is the frequency in
hertz of the base note.

The extracted melody is likewise converted to cents.
Since we know in advance that the melody contains the
root note and that it is the lowest note in the melody, we
can use the lowest segment-quantized pitch as the “root”
of the frequency track. Again, the choice of the base fre-
quency is arbitrary, and could depend on any segment or
an average of all segments, however, it is important to pick
a root note such that it is possible to align the candidate
track with the target track.

4.4 Segment alignment

At this point in the algorithm there are two distinct sets
of pitch segments (candidate and target), and the task is
to align them to the best fit. The rhythmic fit is approxi-
mated first by aligning the beginnings of the first and last
notes. This was originally intended as an initial condition
to an iterative rhythmic alignment process, but the rhyth-
mic alignment was not implemented, primarily because
the initial alignment was found to be sufficient for our pur-
poses. This is likely because rhythmic target deviation is
typically very small compared to pitch target deviation.
Future implementations of this system would include an
algorithm to fine-tune the beginnings and endings of the
target melody, and to evaluate the relative rhythm error.
Aligning the beginning of the last segment gave better re-
sults than aligning the end of the last segment because
note offset accuracy is much less important for melody
identification than onset accuracy, and singers tend to cut
off final notes in a phrase earlier than other notes.

Aligning the segments by pitch consisted of calculat-
ing the ratio between each pair of segments, and averaging
these ratios across all segments, weighted by the segment
length. This calculated the scaling factor which would
bring the measured pitch track into as close alignment as
possible with the ideal pitch track. Because the tracks
have already been converted to cents, the pitch intervals
are relative and so two identical melodies in different keys
differ only by a scaling factor. In this case, the ratio is
found which best aligns the measured pitch to the ideal
pitch.
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5 RESULTS
In this section a set of figures is presented showing exam-
ples of the pitch track phenomena observed in the course
of this study. These figures are presented in pairs, with
the first figure containing a complete melody track with
a highlighted pitch segment, and the second figure con-
taining an enlarged plot of the segment in question. Both
plots are shown in relative pitch, with different scales. The
complete melody lines are constructed so the root note of
the target melody line is at 0 cents. The individual seg-
ment plots are built with the target pitch at 0 cents, which
clearly shows the deviation from the target in cents. Fig-
ures 1 and Figures 2 show an example of these plots. The
singer of this clip is subject 211, and the “g” refers to the
7th prompt in the generalized list (corresponding to the
singing of “O Canada”)
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Figure 1: Pitch track with mean and target pitches.
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Figure 2: Indicated segment from Figure 1.

This first pair shows the success of the alignment algo-
rithm as well as the deviation in pitch scale of the singer.
In general, the singer is “in tune,” and the melody track is
recognizable, but there are some things of note here with
regard to the deviation from the target. First, the singer
glides up to the highlighted note. This is of particular in-
terest because, as indicated previously, no cueing pitches
were given. Subjects sang in whatever key they chose. If
the subjects were singing in arbitrary keys, why should
subjects glide up to the first note they sing? Perhaps it
is because they have a target pitch in their head, and as
they start singing they notice and correct the mis-tuning,
until the target pitch is reached. Control systems work
this way as well—a target is chosen, and the system can
only respond in a finite amount of time, thereby approach-
ing the target over a period of time. Professional singers
avoid this initial glissando by holding a mental model of

the note to be sung before vocalizing the note. Choir di-
rectors instruct their singers to “Think the note before you
sing the note.”

The next sections and figures provide a discussion of
some of the typical deviations from the target pitch that
were observed in the course of this research.

5.1 Vibrato

Vibrato is a well-known phenomenon in musical analysis,
wherein the frequency of a voice or instrument is mod-
ulated by a pseudo-sinusoidal waveform. Prame (1994)
Showed that in singing, this modulation is usually around
6.0 Hz. Typically, the formants which characterize the
phoneme being sung do not change with the vibrato,
which means that as the frequency partials oscillate in and
out of the frequency peak of the formant, their amplitude
increases and decreases as well. Vibrato blurs the pitch
realization, making it more difficult to determine the in-
tended pitch target.

Many novice and expert singers studied in this re-
search used vibrato in their singing. It is theorized (al-
though as yet unsubstantiated) that individuals using a
query-by-humming system may, consciously or subcon-
sciously, attempt to reduce the amount of vibrato in their
singing, and to flatten their pitch tracks, to clarify and reg-
ularize their query. Vibrato has the perceptual effect of
tightly coupling the partials of the note being sung, al-
lowing it to be heard above other sounds. This is one of
the reasons that opera singers utilize higher-frequency and
higher-amplitude vibrato than popular singers, who use
microphones and amplifiers to achieve the same purpose.
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Figure 3: Mis-aligned pitch track with high-amplitude vi-
brato.
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Figure 4: Indicated segment from Figure 3.
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Figure 5: Pitch track with low-amplitude vibrato.
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Figure 6: Indicated segment from Figure 5.

Figures 3 and 4 show an example of a situation where
high-amplitude vibrato can interfere with the retrieval of
pitch target information. Subject 226 is a trained tenor
soloist, and produces vibrato which ranges almost two
semitones from lowest to highest pitch in the segment
shown in Figure 4. Figure 3 shows how the vibrato has
make the investigation of the pitch track difficult. It is
clear that the alignment algorithm has failed in this case,
and it is difficult even to follow the extracted pitch track
with the eye. The general contour is there but without a
template to match to, identifying the melody of that utter-
ance using this or any other method would be quite dif-
ficult. This is in contrast to Figure 1 where the discrete
notes and melody of the extracted pitch track are easy
to follow visually. It is interesting to note here that the
recordings from Subject 226 are arguably the most per-
ceptually cohesive, and while many would consider 226
the “best” singing of the 50 singers in the set, it is one of
the most difficult to track algorithmically.

In contrast, Figures 5 and 6 show an example of a low-
amplitude tight vibrato. The pitch track is the most visu-
ally consistent of the set, and the most easy to follow with
the eye. It would not be difficult to design a system to
extract the melody from this signal without any a priori
knowledge of the ideal pitches or ideal rhythm—both are
strongly adhered to by the singer.

5.2 Expertise of the Singer

Subjects were asked to indicate their level of experience
with singing, with music, and with public speaking. Some
subjects claimed little or no experience, while others were
expert or professional. The differences in the pitch tracks
between the novice and the expert is quite interesting.

Figures 7 and 8 show the pitch track for subject 219,
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Figure 7: Pitch track of a novice singer.
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Figure 8: Indicated segment from Figure 7.
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Figure 9: Pitch track of a trained singer.
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Figure 10: Indicated segment from Figure 9.

an example of a novice singer, and Figures 9 and 10 show
the pitch track for subject 216, an example of a trained
singer and musician. When asked to describe their musi-
cal, choral or spoken voice training or experience, subject
219 indicated 2 years of theatrical speaking, and subject
216 indicated 10 years of piano, one semester of a voice
workshop, and 5 years in choirs. Note particularly that al-
though the pitch rises and falls above the intended target,
the novice singer does not have a consistent vibrato and
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appears to be attempting to hold the pitch constant, while
the experienced singer has a well-formed and intentional
vibrato, closely resembling a sinusoid. It should also be
noted here, however, that the novice is singing “in tune”
just as well as the experienced singer.

The experience level of the singers whose tracks ap-
pear in this paper are summarized in the following list:

211 (age 59) 10 years trumpet, 3 years piano, 25 years
choirs

216 (age 32) 10 years piano, 1 semester voice workshop,
5 years choirs

219 (age 24) 2 years theatrical voice

226 (age 26) 4 years classical voice, 20 years choirs, solo
training, 2 years theory

238 (age 39) 6 years guitar, 5 years guitar, 1 year ukelele,
2/3 year public speaking, 9 years informal speaking

Another interesting observation is that the “quality” of
the singing of subjects with experience but without spe-
cific vocal solo or opera training was uncorrelated with
the amount of musical or vocal experience they had. Most
singers in this range produced consistent pitch and tone
with relatively well-formed vibrato. Only the subjects
with very little or very much training exhibited excep-
tional characteristics in their pitch track, and even then,
the single subject who claimed no experience whatsoever
produced a pitch track comparable to those claiming years
of experience in choirs.

5.3 Onset and offset

Looking at Figure 9, it is clear that as the singer ascends
the major scale consisting of 2, 4, 5, 7, and 9 semitones
above the root, that the pitch descends slightly before the
pitch transition, and rises above the target pitch before set-
tling into a vibrato oscillation. This is a common observa-
tion across the data set. Singers rarely make a clean break
between notes, and whether they glide up to or down to
the target pitch depends on the previous note, if there is
one. Observe in Figure 5, toward the end of the clip the
pitch glides down in a very short period of time, but re-
mains continuous during that glide. This is unusual in the
data set—most singers produce pitch tracks more like that
seen in Figure 1, where a complete break is made and the
pitch glides up to the target of the last note.

6 CONCLUSIONS
A singing human aims for a consistent note, and uses
an oscillation around that note to solidify the perception
in the ears of a listening human. Listening machines
must therefore take this intentional deviation from the tar-
get into account in order to accurately transcribe human
singing. In many cases, pitch is one of the only available
features for transcribing human singing. Deviations from
the ideal are not universal, and models of vibrato in a song
recognition system must take these into account while be-
ing able to distinguish between vibrato pitch changes and
note transition pitch changes.

The level of experience of the singer has an impact on
the type of deviation shown in the singing. Novice singers
and singers beginning to study “professional” singing may
have erratic vibrato and unpredictable glide transitions,
while experienced singers tend to have more regularized
vibrato and note transitions. Knowledge of the singer in
question would be very useful, and for that reason it may
be worthwhile to investigate ways of classifying human
singing with the intent of developing personalized devi-
ation models or a set of standardized deviation models
based on feature clustering.
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