SCALABLE METADATA AND QUICK RETRIEVAL OF AUDIO SIGNALS

Nancy Bertin, Alain de Cheveigné
Equipe Audition
CNRS UMR 8581 - ENS (DEC)
29, rue d’Ulm
75005 PARIS

Nancy.Bertin@ens.fr, Alain.de.Cheveignelens.fr

ABSTRACT

Audio search algorithms have reached a degree of speed
and accuracy that allows them to search efficiently within
large databases of audio. For speed, algorithms gener-
ally depend on precalculated indexing metadata. Unfor-
tunately, the size of the metadata follows the same expo-
nential trend as the audio data itself, and this may lead to
an exponential increase in storage cost and search time.
The concept of scalable metadata has been introduced to
allow metadata to adjust to such trends and alleviate the
effects of forseeable increases of data and metadata size.
Here, we argue that scalability fits the needs of the hi-
erarchical structures that allow fast search, and illustrate
this by adapting a state-of-the-art search algorithm to a
scalable indexing structure. Scalability allows search al-
gorithms to adapt to the increase of database size without
loss of performance.

Keywords: Search, indexing, scalability, audio re-
trieval, scalable metadata.

1 INTRODUCTION

This paper investigates the usefulness of scalable content-
based metadata for quick retrieval of music and audio
data. In agreement with the well-known law of Moore
and its avatars (Odlyzko, 1999), we observe an exponen-
tial growth of multimedia content available on the web,
cable networks, DVDs, hard disks, etc. This constitutes
a problem for those who manipulate the content (produc-
ers and consumers alike), and also for the algorithms and
tools that deal with such data. The concept of metadata
was introduced as an attempt to alleviate problems associ-
ated with manipulating large quantities of data. Metadata
are designed to summarize data in a format that is com-
pact so as to minimize storage costs, and optimized for
manipulations such as search and retrieval. Metadata are

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

(©2005 Queen Mary, University of London

238

however likely to grow at the same rate as the data itself.
Growth of metadata may be addressed by designing new
metadata formats, either more compact descriptions of the
data, or else second-order descriptions of the metadata.
However new formats introduce interoperability problems
as well as ergonomy problems for the user who must learn
new tools to deal with these new formats.

The concept of scalable metadata was introduced to
address these issues (de Cheveigné, 2002). A definition
of scalability is given in Sect. 2; in brief, metadata are
scalable if they have the same semantics at all scales, can
be converted from high- to low-resolution scale (rescaled),
and do not depend on the intervening rescaling operations.
Scalable metadata can thus be adjusted to fit databases of
any size, and the needs of any application, while retaining
consistent semantics across scale. Metadata storage for-
mats, and tools to manipulate them, thus remain the same
whatever the future increases in data size. Arguably, meta-
data must be scalable to follow future increases in data size
and so non-scalable formats will eventually be superseded
(de Cheveigné, 2002).

A crucial function in any system that handles large
quantities of data is search. Search is needed for query
operations, but also for signal processing, display, house-
keeping, etc. Without adequate attention to efficiency and
asymptotic properties, the cost of search operations can
very easily grow out of bounds. For example a search
time linear in size is obviously prohibitive if size increases
exponentially. Efficient algorithms have been developed
for e.g. strings or trees, but relatively fewer are effective
for multimedia data. Examples are (Luettgen and Willsky,
1995; Spence and Parra, 2000; Jain et al., 1999; Crestani
et al., 1998; Kashino et al., 1999, 2003). Efficient search
methods usually involve construction of an index struc-
ture within which search proceeds. The indices can be
understood as metadata, and this raises the issue of their
scalability. It also raises the question of the usefulness of
metadata for search in general. For all practical purposes,
search within a multimedia database is search within the
metadata associated with the content. The effectiveness of
scalable metadata as a substrate for search is an essential
question.

Here, we start from a state-of-the-art audio search al-
gorithm (Kashino et al., 1999, 2003) and show that it can
be adapted to take advantage of scalable metadata. Scal-
ability eases the implementation of a hierarchical meta-

data structure that speeds search. Efficient search in-
volves pruning of the search space at the earliest possi-
ble stage. The statistical operations involved in the defi-
nition of scalable metadata (extrema, mean, variance, his-
togram, etc.) are effective for this purpose, as these statis-
tics allow inference of the presence (or better: the ab-
sence) of a search token within the subset of data that
they summarize. Such statistics have been exploited previ-
ously (Gaede and Giinther, 1998; Spence and Parra, 2000;
Sivakumaran et al., 2001) for search within audio or image
domains.

The notion of scalability is defined in the next section.
Principles of efficient search are outlined in Sect. 3. Ex-
periments to test the effectiveness of hierarchical search
are described in Sect. 4.

2 SCALABLE METADATA
2.1 Properties and design

Three properties characterize scalable metadata. First,
they may be instantiated at any resolution. Second, an
existing description may be converted automatically to a
lower-resolution one. Third, the description at a given res-
olution depends only on the resolution, and not on the his-
tory of scaling operations that led to it. Scaling entails loss
of information: low resolution metadata contain less infor-
mation than high resolution, and conversion from lower to
higher resolution is not possible. Lower resolutions are
usually imposed by application or system-dependent stor-
age or processing constraints. The scalability property al-
lows low and high resolution metadata to be compared,
thus ensuring interoperablity.

Scalability is provided by a set of well-defined opera-
tions that transform series of numerical descriptor values
from one resolution to the next. Among them are: ex-
trema (min and max), sum, mean and histogram. Vari-
ance and covariance are also scalable if associated with
the mean. Others are described in (de Cheveigné, 2002;
de Cheveigné and Peeters, 1999a; ISO/IEC_JTC_1/SC_29,
2001), in particular a “scalewise variance” that measures
variance across scale, as well as “weighted” versions of
the above operations. Weighted operations allow certain
samples to be discounted before scaling, for example if
they are known to be locally undefined or unreliable. A
scalable data structure for metadata consists of the meta-
data (represented as a series of scalars, vectors or matri-
ces) together with information that describes its “geom-
etry”: name of the scaling operation that was (or should
be) applied to it, number of samples, scale ratio, etc. The
structure contains all that is needed by an application to
make sense of the data. It also contains all that that is
needed to rescale it. Metadata storage or transfer systems
can thus adjust to the resolution according to storage ca-
pacity or bandwidth constraints.

The scalable structure is designed to be “plugged in”
to a content-based descriptor, to serve as a container for
the series of descriptor values. Typically, an audio de-
scriptor such as spectrum or power is calculated from au-
dio content and then stored with on one hand descriptor-
specific parameters (frame rate, spectral resolution, etc.)
and on the other a series of descriptor values. The latter is

stored in a scalable data structure. In some cases it is use-
ful to think of the scaling operation as part of the definition
of the descriptor. For example, the power spectrum of a
segment of audio is equal to the mean of the power spectra
of the frames within that segment. Power can be defined
with whatever granularity. In other cases, the scaling op-
erations are best understood as statistics that describe the
distribution of values that they summarize. For example,
mean and covariance can be used to parametrize a gaus-
sian distribution. A given descriptor may eventually be
scaled according to several different operations, each at
its own scale, all stored within the same description.
Scalability was introduced as a design principle of the
audio part of the MPEG-7 metadata standard. Content-
based audio descriptors are built using a “Scalable-
Series” datatype that stores the series of descriptors
values, and confers to each MPEG-7 audio descrip-
tion the scalability property (de Cheveigné and Peeters,
1999a,b, 2000; ISO/IEC_JTC_1/SC_29, 2001). Audio de-
scriptors used in the MPEG-7 standard are defined in
(ISO/MMEC_JTC_1/SC_29, 2001). A useful property of the
MPEG-7 data structures is that they can accommodate a
descriptor instantiated at multiple scales, and with multi-
ple scaling rules. Some examples of scalable audio de-
scriptors and associated scaling operations are given in
Tab. 2.1, others are described in (de Cheveigné, 2002).

Table 1: Descriptor examples.

Descriptor Typical operations | Useful for
Waveform Min, Max Display, search
Power Mean, variance Search
Fundamental | Weighted mean, Query by
frequency Histogram humming
Power Mean, Covariance, | Display, search
spectrum Histogram

2.2 Scalability and the life-cycle of metadata

As evoked previously, scalability addresses issues related
to the life-cycle of multimedia content and metadata. It
enhances the useful properties of interoperability and re-
usability of metadata descriptions, that are further en-
hanced by being standardized. Metadata resolution re-
quirements typically vary across applications and across
time, and the same is true of storage and transport con-
straints. Metadata produced at one time for one applica-
tion may need to be reused at another time by another ap-
plication. A level of detail that is appropriate at one time
may later be excessive, when the volume of data to de-
scribe has increased. Scalability allows the same metadata
formats to be used for every application. It frees the appli-
cation designer from the difficult decision of the “right”
resolution. It also allows rescaling operations to be sched-
uled at the level of the transport or storage system, so that
metadata may be thinned rather than deleted when space
comes to lack. Scalability thus extends the life-cycle of
metadata.

239

2.3 Typical applications

Scalable metadata are useful for a range of applications.
They can be used for display of audio data within a
user interface (music browser or editor). For example,
a “waveform” descriptor may be defined as a time-series
of min/max pairs. This is sufficient to produce a full-
resolution graphical display of the waveform within an au-
dio file. As long as there are as many pairs as pixels hori-
zontally, the result is identical to plotting all samples of the
original waveform, and yet cheaper in terms of storage,
transport and drawing. Likewise a sonagram-like spec-
trum descriptor (time-frequency representation). Descrip-
tors may be combined, for example a low-resolution spec-
trogram associated with fundamental frequency and har-
monicity measure, to approximate a high-resolution spec-
trogram. Descriptors may serve also to produce icons.

Scalable audio metadata may also be used to provide
audio feedback for browsing. For example, a combina-
tion of a low-resolution power spectrum with descriptors
of fundamental frequency, harmonicity and roughness al-
lows a rough rendering of the texture of audio content to
be restituted. By focusing on the large scale structure of
documents or collections, such auditory or visual feed-
back is complementary to the more common practice of
providing a human-edited clip, for instance. A synthetic
“earcon” may thus be used to characterize file content

The most important function, however, is search. The
importance of search increases as content grows, and man-
ual operations become less feasable. Search is needed to
respond to user demands to “find” specific content. It is
also needed to support “house-keeping” operations at the
system level, or to organize data into useful synthetic rep-
resentations for a user interface. For example, a display
that represents the content of a hard disk with duplicates
colored in red would be of great use to a user. Search
supports such functionality.

3 SCALABILITY AND SEARCH

Efficient search is based on pruning, that is, early elim-
ination of the parts of the search space where the query
is known not to be. This is typically done by organizing
the search space hierarchically as a tree and attaching in-
formation to each node, such that by consulting that infor-
mation the algorithm can know that the token is not within
the subtree spanned by the node.

Organizing the data in hierarchical search structures is
a principle shared in numerous domains: string matching
(Fredriksson, 2004), image browsing and search (Spence
and Parra, 2000; Chen et al., 2000), bioinformatics and
DNA analysis (Eisen et al.,, 1998), speech processing
(Zotkin and Duraiswami, 2004), etc. Many standard
search algorithms use structures such as binary trees, red-
black trees, B-trees (Cormen et al., 1990), hierarchical
clustering (Krishnamachari and Abdel-Mottaleb, 1999).
Multiple-resolution representations of the data may be
used to label such trees to perform hierarchical search,
either deterministic (Chen et al., 2000; Li et al., 1996)
or probabilistic (Luettgen and Willsky, 1995; Spence and
Parra, 2000).

Scalable metadata are well suited for this purpose. The

240

index at each node is a scaled summary of the indices of
lower nodes. The scaling operations mentioned above (ex-
trema, mean, variance, etc.) offer statistics that describe
the set of data that they summarize, and thus each node
allows inference as to whether a search token is included
in the subtree.

Extrema statistics support deterministic pruning: a
node is pruned if the search token is out of bounds. As
an example, an audio waveform comparison algorithm
based on minima and maxima of the waveform is de-
scribed in (de Cheveigné, 2002; ISO/IEC_JTC_1/SC_29,
2001). Other statistics such as mean and covariance al-
low probabilistic inference based on a parametric model
of the data set, for example multivariate gaussian. The
“scalewise variance” statistics described in (de Cheveigné,
2002; ISO/IEC_JTC_1/SC_29, 2001) allows yet finer char-
acterization of the distribution, as do various combinations
of these statistics.

Search proceeds from the root of the tree (lowest reso-
lution) to the leaves (highest resolution). At each node, the
decision is made whether to prune the subtree as a result
of an inference based on the index of that node. Search
is fast near the root, and more slow but reliable as it pro-
ceeds towards the leaves. For a very large database (or
one that is distributed across the network), only the high-
level nodes may be available on line, the off-line lower-
level nodes being retrieved on demand, if available. Early
pruning reduces the number of times that this potentially
costly operation needs to be performed. Scalable meta-
data thus provide the hierachical search structures needed
to support efficient search.

4 EXPERIMENT

The aim of this experiment is to demonstrate that scal-
able metadata can support effective content-based audio
search. For that purpose we took a state-of-the-art search
algorithm, adapted it to make use of a hierarchical struc-
ture based on scalable metadata, and compared its perfor-
mance with that of the original.

4.1 Baseline algorithm

An algorithm that achieves efficient pruning without a hi-
erarchical search structure is the “active search” algorithm
of Kashino et al. (1999, 2003). The algorithm, based on
histograms of vector-quantized spectra, allows a segment
of audio (query token) to be found within a database of
audio documents. In brief, the database to be searched
is indexed by calculating power spectra at a given frame
rate. Spectra warped to a logarithmic frequency axis are
vector-quantized using a code book to form a time-series
of VQ code indices. This series constitutes an index
within which the search proceeds.

At search time, indices of the database are accumu-
lated over a running window to form a time series of his-
tograms. At each frame, the histogram is compared to
a similar histogram formed from the query token, until
a match is found. The efficiency of search stems from
the fact that, after each comparison between the query
histogram and the current histogram, the algorithm can

skip forward a number N of index samples equal to the
largest mismatch between corresponding bins of token
and database histograms. Indeed, a time shift of at least N
frames is required to resorb that mismatch. The algorithm
is thus fast.

As just described, the algorithm is sure to find a match
if the analysis frames of query and database are tempo-
rally aligned. However, perfect alignment is not always
guaranteed, and misalignment may cause the VQ series to
differ slightly. Taking this into account, the algorithm uses
a measure of similarity defined as:

L
S(ha,he) = 73 min(ho(k), he(k))
k=1

where hg(k) is the k-th coefficient of the query his-
togram, hc(k) the current histogram (taken from the
database), and L the codebook size. The token is con-
sidered to have been found when the similarity exceeds a
certain threshold.

(L]

Figure 1: Schematic diagram of the indexing phase. Over-
lapping frames are windowed and Fourier-transformed to
obtain power spectra that are then warped to a logarithmic
frequency axis and vector-quantized to produce a series of
codes that are then aggregated into histograms.

histograms

A useful feature of the “active search” algorithm of
Kashino et al. (1999, 2003) in our context is that it is based

on histograms. The histogram operation is scalable, and
therefore this efficient algorithm is a good starting point
to develop a scalable search algorithm also based on his-
tograms. The similarity between the two histogram-based
algorithms makes it easy to draw insights from their com-
parison.

4.2 Hierarchical histogram-based search

The first steps of the scalable algorithm (Fig. 1), are simi-
lar to the active search algorithm of Kashino et al. (1999,
2003). Log-frequency spectra are vector-quantized to
form a series of VQ codes that are then grouped into a
series of histograms. In contrast to the active search algo-
rithm, a series of histograms, rather than VQ codes, forms
the searchable index. The histogram series are then scaled
by successive powers of two to form a hierarchical search
structure (binary tree) that indexes the database (Fig. 2).
At search time, a histogram is similarly calculated from
the query token and compared to the histogram attached
to each node of the database index structure, starting from
the root. Histogram comparison determines whether the
query token is included within the segment spanned by a
node. More precisely, if at frame j and for all codebook
indices k£ we have:

then all spectra within the query token are also found
within the database segment spanned by this node. If the
test fails, that segment of the database may be pruned. If
the test succeeds, it is repeated at successively finer reso-
lutions until it fails or the token is found.

Actually the algorithm is slightly more complex than
just described. So far, a match is guaranteed only if
the query token happens to be temporally aligned with a
same-sized database interval spanned by a node, an un-
likely event. To allow arbitrary aligment, the above com-
parison is replaced by hq (k) < he(k,j) + he(k,j+ 1).
If the segment spanned by the latter two histograms is
shorter than twice the query token, the query token is split
in two and search proceeds with each half. A further com-
plication arises because, as in the active search algorithm
of Kashino et al. (1999, 2003), the temporal aligment of
search token analysis frames and database analysis frames
is not guaranteed. To allow for slight misalignments, the
perfect match criterion must be replaced by an approxi-
mate match criterion involving a threshold.

4.3 Database and implementation

Experiments were performed using the RWC database
(Goto et al., 2002, 2003) that contains a total of approxi-
mately 24 hours sampled at 44100 kHz with 16-bit resolu-
tion of various types of music (classical, Japanese popular
music...).

Spectral features were calculated every 16 ms by ap-
plying an FFT to a 32 ms window shaped as a raised
cosine. The frequency axis was warped to a logarith-
mic scale by grouping power spectrum bins into 8 one-
octave bands ranging from 65.2 to 16000 Hz. Spec-
trum values were raised to a power of 1/3 to improve the

241

shape of their distribution. The advantage of a logarith-
mic scale is that it parallels the spectral resolution of the
ear (although with cruder resolution) and distributes signal
power evenly among bands (most spectra are low-pass).
The 1/3 exponent simulates partial loudness (Hartmann,
1997). This relatively crude resolution (about three times
poorer than the ear) is motivated by the need for concision.
The procedure is similar to that specified in the MPEG-7
standard.

~ - /
/
/
/
/
/
/
\
\
/

\
\

/
\

\

/
/
\
\

7]
/
/
! \
\
AY

<
NANER NSRS NN E RN

scaleratio

[
(<2}
(o9}
Nt

D Compatible histogram bin

D Incompatible histogram bin

Figure 2: Schematic diagram of the hierachical search al-
gorithm. The database is indexed by a series of codevec-
tors (right) from which is derived a binary tree structure of
aggregate histograms. Search proceeds from the root. The
query (represented by a histogram) is compared to each
histogram in turn. In case of failure, the subtree spanned
by that node is pruned (gray). In case of success (white),
search proceeds within the subtree until the token is found,
or the search returns unsuccessful.

A codebook was prepared by applying the LBG vec-
tor quantization algorithm (Linde et al., 1980) to a sub-
set of the database (about 20%). The codebook size was
512, adequate for a 8-dimension feature space. Codebook
size and spectral resolution result from a compromise be-
tween discriminative power and practical constraints. For
comparison, 2-bin quantization of each dimension of a
1/3 or 1/4 octave spectrum would require a codebook of
size 224 or 232 which is clearly unweildy. The codebook
(dictionary) must be included with the indexing metadata
attached to the database to be searched (or else it must
be “well-known”, for example defined by a standard).

242

A codebook prepared in this way will obviously depend
upon the database from which it was prepared. Ideally one
would like to have a sort of “universal” codebook, built on
a very large database and re-usable. Whether such a goal
is feasable remains to be determined.

The time series of spectral features was quantized us-
ing the VQ code book and used to implement both the
active search algorithm of Kashino et al. (1999, 2003)
and the hierarchical algorithm. To implement the hier-
archical search algorithm, series of VQ codes were aggre-
gated to form histograms, and then scaled repeatedly and
stored within a hierarchical data structure. For simplicity,
both algorithms were implemented so that analysis frames
of query and database were aligned, and thresholds (see
above) were set to the ideal value corresponding to an ex-
act match without any tolerance. This affects both algo-
rithms equally. A third algorithm, exhaustive search, was
also implemented for comparison. It simply consists in
a direct comparison of the sequence of vector-quantized
spectra of the query with same-sized subsequences in the
database. This naive algorithm is useful as an upper bound
for calculation time.

Subsets of the database of varying size were extracted
in order to investigate the relation between search speed
and database size. A set of 48 query excerpts of 10s dura-
tion was used as search tokens for both algorithms. Both
algorithms were set up to search for multiple occurrences
(i.e. search did not terminate after the first match). Search
speed was quantified by counting the average number of
histogram comparisons, or average CPU time necessary
to find a query token. Simulations were performed using
Matlab 7.0.1 on a PC with a Pentium 4 - 3 GHz processor.

5 RESULTS AND DISCUSSION
5.1 Results

Table 2 and Fig. 3 summarize the results. The size of the
search space is varied as a parameter. Cost of exhaustive
search (top line) varies linearly with space size. Active
search (middle line) also follows an approximately linear
trend, but is over two orders of magnitude faster than ex-
haustive. Hierarchical search (bottom line) follows a less-
than-linear trend, with a speedup ratio of 7 to 40 over ac-
tive search. Results for CPU time are similar.

Table 2: Search time and speed-up ratio (SU) for active
search (AS) and hierarchical search (HS).

[[1h [2h [6h [13h [24h [48h |
AS [525 | 803 | 2726 | 5043 | 9794 | 19588
HS [69 |72 | 123 | 158 | 272 | 481
SU [76 | 112222 [319 [36 |40

The hierarchical algorithm based on scalable metadata
is faster than the baseline algorithm, itself known to be
competitive. This shows that scalable metadata can sup-
port efficient search. The result is welcome, as we argued
earlier that scalability is a necessary property of metadata.

Both algorithms attained 100% accuracy (defined as
the mean between precision and recall rate). This high

10

+ - Exhaustive search
ral — © — Active search I]
—*— Hierarchical search +

g2 +
£ 1% * 5
j=2)
=}
8 +
1%}
2 +
T 10} E
£
5
X 4 _--°
210t _ O 4
° _ -0 7
[_e -
E 10 -7 E
E -

101 Ll L - A7

10° 10

Number of eodes in datahase index

Figure 3: Search time as a function of database size.

level of accuracy was obtained for the case where analy-
sis frames of query and database were temporally aligned.
While this can be assumed in some applications, in oth-
ers there is no guarantee of temporal alignment. Mis-
alignment produces a mismatch that must be compensated
by allowing histogram comparisons to be tolerant. This
in turn increases the proportion of “false positives” and
causes subtree pruning to be less effective, thus increas-
ing search time. The active search and hierarchical search
algorithms are equally affected. Similar “fuzzy-match”
schemes are required if search is expected to tolerate dis-
tortions (such as produced by lossy coding).

5.2 Discussion

Scalability puts strong constraints on the semantics and
structure of metadata. Here we found that these con-
straints are compatible with the important function of
search, and that scalability may actually help to imple-
ment hierarchical structures that support very efficient
search. Efficiency stems from the hierarchical organiza-
tion of the search space induced by scaling.

Scalability implies that the temporal order of labels at
each level must be conserved. This leads to a hierarchical
structure that less efficient than, say, hierarchical cluster-
ing by similarity. It is conceivable that efficiency could be
enhanced by reorganizing the search tree at search time.
More research is needed to develop index schemes that
are both scalable and efficient.

Speedups may also be expected by improving the dis-
tributional properties of the descriptor, for example by
normalization by power (separately vector-quantized), or
transformation to a “cepstrum-like” representation with
a covariance matrix closer to diagonal. The index may
also be improved by including additional descriptors to
capture features not well represented by the octave-band
spectrum: fundamental frequency, harmonicity, rough-
ness, etc.

An attractive feature of histogram-based search is that
it can be applied to any descriptor. Useful examples are
fundamental frequency, chroma, event counts, or even
text-based descriptors. All can be quantified and stored

as histograms. A constraint is that the coding (quantiz-
ing) stage requires a dictionary. Scalability requires that
the same dictionary be used to quantize all data, and this
implies the existence of a well-known and accepted (i.e.
standardized) dictionary. Whether a universal dictionary
can be found for each descriptor that can cover all needs
is an important issue.

The present paper examined only algorithms based on
the histogram. Other scalable operations as extrema, mean
and covariance, scalewise variance, etc. produce statistics
that can be used to quantify the distribution of values that
they summarize. These too are expected to support effi-
cient search. More research should be devoted to the issue
of search within scalable representations.

6 CONCLUSIONS

In this paper, we investigated search within audio content
based on scalable metadata. We verified that a standard
search algorithm can be applied to scalable metadata, and
found additionally that search could be speeded by mak-
ing use of the hierarchical structure offered by scalable
metadata. While we did not test other search algorithms, it
is reasonable to believe that they too can be implemented
and benefit from scalability. Scalability is a property that
is necessary to allow metadata to follow future trends in
data size. It is a welcome result that it can support essen-
tial operations such as search.

ACKNOWLEDGEMENTS

The authors wish to thank Daniel Pressnitzer, Dan Gnan-
sia and Maria Chait for their useful comments and friendly
support during the conduct of this research.

REFERENCES

J.-Y. Chen, C. Bouman, and J. Dalton. Hierarchical
browsing and search of large image databases. In IEEE

transactions on Image Processing, volume 9, pages
442455, march 2000.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to
algorithms. The MIT Press, 1990.

F. Crestani, C. Rijksbergen, and I. Campbell. Is this doc-
ument relevant ?... probably: a survey of probabilistic
models in information retrieval. In ACM Computing
Surveys, volume 30, pages 528-552, 1998.

A. de Cheveigné. Scalable metadata for search, sonifica-
tion and display. In Proceedings of the 2002 Interna-
tional Conference on Auditory Display, Kyoto, Japan,
July 2002.

A. de Cheveigné and G. Peeters. Core set of audio sig-
nal descriptors. Technical Report JTC1/SC29/WG11,
MPEGO00/m5885 technical report, ISO/IEC, 2000.

A. de Cheveigné and G. Peeters. Scale tree. Technical
Report JTC1/SC29/WG11, MPEG99/m5076 technical
report, ISO/IEC, 1999a.

A. de Cheveigné and G. Peeters. Scale tree up-
date. Technical Report ISO/IEC JTC1/SC29/WG11,
MPEG99/m5443 technical report, ISO/IEC, 1999b.

243

M. Eisen, R. Spellman, P. Brown, and D. Botstein. Cluster
analysis and display of genome-wide expression pat-
terns. In Proc. Natl. Acad. Sci. USA, Genetics, vol-
ume 95, pages 14863-14868, december 1998.

K. Fredriksson. Metric indexes for approximate string
matching in a dictionary. In Proceedings of the 11th
International Symposium on String Processing and In-
formation Retrieval (SPIRE’2004), LNCS 3246, pages
212-213. Springer—Verlag, 2004.

V. Gaede and O. Giinther. Multidimensional access meth-
ods. In ACM Computing Surveys, volume 30, pages
170231, 1998.

M. Goto, H. H., N. T,, and R. Oka. RWC music database:
Popular, classical and jazz music databases. In Proc.

of International Conference of Music Information Re-
trieval (ISMIR), pages 287-288, 2002.

M. Goto, H. H., N. T,, and R. Oka. RWC music database:
Music genre database and musical instrument sound
database. In Proc. of International Conference of Music
Information Retrieval (ISMIR), 2003.

W. Hartmann. Signals, Sounds and Sensation. AIP Press,
1997.

ISO/IEC_JTC_1/SC_29. Information technology - mul-
timedia content description interface - part 4: Audio.
Technical Report ISO/IEC FDIS 15938-4, 2001.

A. Jain, M. Murty, and P. Flynn. Data clustering: a review.
In ACM Computing Surveys, volume 30, pages 265—
321, 1999.

K. Kashino, G. Smith, and H. Murase. Time-series active
search for quick retrieval of audio and video. In Proc. of
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), volume 6, pages 29932996,
March 1999.

K. Kashino, T. Kurozumi, and H. Murase. A quick search
method for audio and video signals based on histogram
pruning. [EEE Transactions on Multimedia, 5:348—
357, Sep. 2003.

S. Krishnamachari and M. Abdel-Mottaleb. Hierarchi-
cal clustering algorithm for fast image retrieval. In
IS&T/SPIE Conference on Storage and Retrieval for
Image and Video Databases VII, pages 427-435, San
Jose, California, January 1999.

C.-S. Li, P. Yu, and V. Castelli. Hierarchyscan: A hierar-
chical similarity search algorithm for databases of long
sequences. In Proc. of IEEE Conference on Data Engi-
neering, 1996.

Y. Linde, B. A., and R. Gray. An algorithm for vector
quantizer design. [EEE Transactions on Communica-
tions, pages 702-710, January 1980.

M. Luettgen and A. Willsky. Likelihood calculation for
a class of multiscale stochastic models, with applica-
tion to texture discrimination. In IEEE Transactions on
Image Processing, volume 4, pages 194-207, 1995.

A. Odlyzko. The current state and likely evolution of the
internet. In Proc. Globecom 99, IEEE, pages 1869—
1875, 1999.

244

P. Sivakumaran, J. Fortuna, and A. M. Ariyaeeinia. On
the use of the bayesian information criterion in multi-
ple speaker detection. In Proc. Eurospeech, pages 795—
798, 2001.

C. Spence and L. Parra. Hierarchical image probability
(HIP) models. In Proc. Advances in Neural Information
Processing Systems, pages 848—-854, 2000.

D. Zotkin and R. Duraiswami. Accelerated speech source
localization via a hierarchical search of steered re-
sponse power. In IEEE Transactions on Speech and
Audio Processing, volume 12, pages 499-508, 2004.

