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ABSTRACT

Supervised learning can be used to create good systems
for note segmentation in audio data. However, this re-
quires a large set of labeled training examples, and hand-
labeling is quite difficult and time consuming. A bootstrap
approach is introduced in which audio alignment tech-
niques are first used to find the correspondence between
a symbolic music representation (such as MIDI data) and
an acoustic recording. This alignment provides an initial
estimate of note boundaries which can be used to train a
segmenter. Once trained, the segmenter can be used to
refine the initial set of note boundaries and training can
be repeated. This iterative training process eliminates the
need for hand-segmented audio. Tests show that this train-
ing method can improve a segmenter initially trained on
synthetic data.

Keywords: Bootstrap, music audio segmentation, note
onset detection, audio-to-score alignment.

1 INTRODUCTION

Audio Segmentation is one of the major topics in Music
Information Retrieval (MIR). Many MIR applications and
systems are closely related to audio segmentation, espe-
cially those that deal with acoustic signals. Audio seg-
mentation is sometimes the essential purpose of the appli-
cation, such as dividing acoustic recordings into singing
solo and accompaniment parts. Alternatively, audio seg-
mentation can form an important module in a system, for
example, detecting note onsets in the sung queries for
Query-by-Humming systems.

A common practice is to apply various machine learn-
ing techniques to the audio segmentation problem, and
there are many satisfying results. Some of the represen-
tative machine learning models used in this area are the
Hidden Markov Model (HMM) (Raphael, 1999), Neural
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Network (Marolt et al., 2002), Support Vector Machine
(SVM) (Lu et al., 2001), Hierarchical Model (Kapanci
and Pfeffer, 2004), etc. However, as in many other ma-
chine learning applications, audio segmentation using ma-
chine learning schemes inevitably faces a problem: get-
ting training data is difficult and tedious. Manually seg-
menting each note in a five-minute piece of music can take
several hours of work. Since the quantity and quality of
the training data directly affects the performance of the
machine learning model, many designers have no choice
but to label some training data by hand.

Meanwhile, the research of audio-to-score alignment
has become a popular MIR topic in recent years. Link-
ing signal and symbolic representations of music can en-
able many interesting applications, such as polyphonic
music retrieval (Hu et al., 2003), real-time score follow-
ing (Raphael, 2004), and intelligent editors (Dannenberg
and Hu, 2003).

In a sense, audio-to-score alignment and music au-
dio segmentation are closely related. Both the operations
are performed on acoustic features extracted from the au-
dio, though alignment focuses on global correspondence
while segmentation focuses on local changes. Given a
precise alignment between the symbolic and correspond-
ing acoustic data, desired segments can be easily extracted
from audio. Even if alignment is not that precise, it still
provides valuable information to music audio segmenta-
tion. Conversely, given a (precise) segmentation, align-
ment becomes almost trivial. This relationship between
alignment and segmentation can be exploited to improve
music segmentation.

We propose a bootstrap method that uses automatic
alignment information to help train the segmenter. The
training process consists of two parts. One is an alignment
process that finds the time correspondence between the
symbolic and acoustic representations of a music piece.
The other part is an audio segmentation process that ex-
tracts note fragments from the acoustic recording. Align-
ment is accomplished by matching sequences of chro-
magram features using Dynamic Time Warping (DTW).
The segmentation model is a feed-forward neural network,
with several features extracted from audio as the inputs,
and a real value between O and 1 as the output. The
alignment results help to train the segmenter iteratively.
Our implementation and evaluation show that this training
scheme is feasible, and that it can greatly improve the per-
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formance of audio segmentation without manually label-
ing any training data. Though we need to note that the au-
dio segmentation process discussed in this paper is aimed
at detecting note onsets, this bootstrap learning scheme
combined with automatic alignment can also be used for
other kinds of audio segmentation.

The initial purpose of this project is to aid the re-
search of creating high-quality music synthesis by listen-
ing to acoustic examples. The synthesis approach com-
bines a performance model that derives appropriate ampli-
tude and frequency control signals from a musical score
with an instrument model that generates sound with ap-
propriate time-varying spectrum. In order to learn the
properties of amplitude and frequency envelopes for the
performance model, we need to segment individual notes
from acoustic recordings and link them to corresponding
score fragments. This certainly requires a audio-to-score
alignment process. We previously developed a polyphonic
audio alignment system and effectively deployed it in sev-
eral applications (Hu et al., 2003) (Dannenberg and Hu,
2003). But we face a particular challenge when trying to
use the alignment system in this case, mainly due to the
special requirement imposed by the nature of instrumen-
tal sounds. For any individual note generated by a musical
instrument, the attack part is perceptually very important.
Furthermore, attacks are usually very short. The attack
part of a typical trumpet tone lasts only about 30 millisec-
onds (see Figure 1). But due to limits imposed by the
acoustic features used for alignment, the size of the anal-
ysis windows is usually 0.1 to 0.25 s, which is not small
enough for note segmentation, especially the attack part,
which can be easily overlooked. Therefore, we must pur-
sue accurate audio alignment with a resolution of several
milliseconds. Because our segmentation system is devel-
oped for music synthesis, we are mainly concerned with
monophonic audio, but we believe that it should not be
too difficult to extend this work to deal with polyphonic
music.

Sustain
(173.8 ms)

\i

Attack Decay
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Figure 1: A typical trumpet slurred note (a mezzo forte
C4 from an ascending scale of slurred quarter notes), dis-
played in waveform along with the amplitude envelope .
Attack, sustain and decay parts are indicated in the figure.

The audio-to-score alignment process is closely re-
lated to that of Orio and Schwarz (2001), who also
uses dynamic time warping to align polyphonic music to
scores. While we use the chromagram (described in a later
section), they use a measure called Peak Structure Dis-
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tance, which is derived from the spectrum of audio and
from synthetic spectra computed from score data. An-
other noteworthy aspect of their work is that, since they
also intend to use it for music synthesis (Schwarz, 2004),
they obtain accurate alignment using small (5.8 ms) analy-
sis windows, and the average error is about 23 ms (Soulez
et al., 2003), which makes it possible to directly gener-
ate training data for audio segmentation. However, this
also greatly affects the efficiency of the alignment pro-
cess. They report that even with optimization measures,
their system is running 2 hours for 5 minutes of music,
and occupying 400MB memory”. In contrast, our system
uses larger analysis windows and aligns 5 minutes of mu-
sic in less than 5 minutes. Although we use larger analysis
windows for alignment, we use small analysis windows
(and different features) for segmentation, and this allows
us to obtain high accuracy.

In the following sections, we describe our system in
detail. We introduce the audio-to-score alignment process
in Section 2, and the segmentation model in Section 3.
Section 4 describes the bootstrap learning method in de-
tail. Section 5 evaluates the system and presents some ex-
perimental results. We conclude and summarize this paper
in the last section.

2 AUDIO-TO-SCORE ALIGNMENT
2.1 The Chroma Representation

As we mentioned above, the alignment is performed on
two sequences of features extracted from both the sym-
bolic and audio data. Compared with several other repre-
sentations, the chroma representation is clearly a winner
for this task (Hu et al., 2003).

Thus our first step is to convert audio data into discrete
chromagrams: sequences of chroma vectors. The chroma
vector representation is a 12-element vector, where each
element represents the spectral energy corresponding to
one pitch class (i.e. C, C#, D, D#, etc.). To compute a
chroma vector from a magnitude spectrum, we assign each
bin of the FFT to the pitch class of the nearest step in the
chromatic equal-tempered scale. Then, given a pitch class,
we average the magnitude of the corresponding bins. This
results in a 12-value chroma vector. Each chroma vector
in this work represents 0.05 seconds of audio data (non-
overlapping).

The symbolic data, i.e. MIDI file, is also to be con-
verted into chromagrams. The traditional way is to syn-
thesize the MIDI data, and then convert the synthetic au-
dio into chromagrams. However, we have found a simple
alternative that directly maps from MIDI events to chroma
vectors (Hu et al., 2003). To compute the chromagram di-
rectly from MIDI data, we first associate each pitch class
with an independent unit chroma vector - the chroma vec-
tor with only one element value as 1 and the rest as 0;
then, where there is polyphony in the MIDI data, the unit
chroma vectors are simply multiplied by the loudness fac-
tors, added and normalized.

The direct mapping scheme speeds up the system by
skipping the synthesis procedure, and it rarely sacrifices
the alignment results. In fact, in most cases we have
tried, the results are generally better when using this al-



ternative approach. Furthermore, it is positively neces-
sary to bypass the synthesis step for this particular ex-
periment. While rendering audio from symbolic data,
the synthesizer Timidity++ (Toivonen and Izumo, 1995-
2004) always introduces small variations in time. But a
later procedure needs to estimate note onsets in the acous-
tic recording by mapping from the MIDI file through the
alignment path. And any asynchronization between the
symbolic and synthetic data can greatly affect its accuracy.

2.2 Matching MIDI to Audio

After obtaining two sequences of chroma vectors from au-
dio recording and MIDI data, we need to find the time
correspondence between the two sequences such that cor-
responding vectors are similar. Before comparing the
chroma vectors, we must first normalize the vectors, as ob-
viously the amplitude level varies throughout the acoustic
recordings and MIDI files. We experimented with differ-
ent normalization methods, and normalizing the vectors
to have a mean of zero and a variance of one seems to
be the best one. But this can cause trouble when dealing
with silence. Thus, if the average amplitude of an audio
frame is lower than a predefined threshold, we define it
as a silence frame, and assign each element of the cor-
responding chroma vector infinite. We then calculate the
Euclidean distance between the vectors. The distance is
zero if there is perfect agreement. Figure 2 shows a simi-
larity matrix where the horizontal axis is a time index into
the acoustic recording, and the vertical axis is a time in-
dex into the MIDI data. The intensity of each point is the
distance between the corresponding vectors, where black
represents a distance of zero.
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Figure 2: Similarity Matrix for the first part in the third
movement of “English Suite” composed by R. Bernard
Fitzgerald. The acoustic recording is the trumpet perfor-
mance by the second author.

We use the Dynamic Time Warping (DTW) algorithm

to find the optimal alignment. DTW computes a path in
a similarity matrix where the rows correspond to one vec-
tor sequence and columns correspond to the other. The
path is a sequence of adjacent cells, and DTW finds the
path with the smallest sum of distances. For DTW, each
matrix cell (i,j) represents the sum of distances along the
best path from (0,0) to (i,j). We use the calculation pat-
tern shown in Figure 3 for each cell. The best path up
to location (i,j) in the matrix (labeled D in the figure) de-
pends only on the adjacent cells (A, B, and C) and the
weighted distance between the vectors corresponding to
row i and column j. Note that the horizontal step from
C and the vertical step from B allow for the skipping of
silence in either sequence. We also weight the distance
value in the step from cell A by v/2 so as not to favor the
diagonal direction. This calculation pattern is the one we
feel more comfortable with, but the resulting differences
from various formulations of DTW (Hu and Dannenberg,
2002) are often too subtle to show a clear difference. The
DTW algorithm requires a single pass through the matrix
to compute the cost of the best path. Then, a backtracking
step is used to identify the actual path.

The time complexity of the automatic alignment is
O(mn), where m and n are respectively the lengths of
the two compared feature sequences. Assuming the ex-
pected optimal alignment path is along the diagonal, we
can optimize the process by running DTW on just a part
of the similarity matrix, which is basically a diagonal band
representing the allowable range of misalignment between
the two sequences. Then the time complexity can be re-
duced to O(maz(m,n)).
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Figure 3: Calculation pattern for cell (4, 5)

After computing the optimal path found by DTW, we
get the time points of those note onsets in the MIDI file
and map them to the acoustic recording according to the
path (see Figure 4).

The analysis window used for alignment is W, =
50ms, and a smaller window actually makes the align-
ment worse because of the way chroma vectors are com-
puted. Thus the alignment result is really not that accu-
rate, considering the resolution from alignment is on the
same scale as the analysis window size. Nevertheless, the
alignment path still indicates roughly where the note on-
sets should be in the audio. In fact, the estimation of the
error between the actual note onsets and the ones found
by the path is similar to a Gaussian distribution. In other
words, the possibility of observing an actual note onset
around an estimated one given by the alignment is approx-
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Figure 4: The optimal alignment path is shown in white
over the similarity matrix of Figure 2; the little circles on
the path denote the mapping of note onsets.

imately a Gaussian distribution. This is valuable informa-
tion that can help to train the segmenter.

3 NOTE SEGMENTATION
3.1 Acoustic Features

Several features are extracted from the acoustic signals.
The basic ones are listed below:

e Logarithmic energy, distinguishing silent frames
from the audio,
LogEng = 10logyg gg::ggjo ,
where Energyo = 1.

e Fundamental frequency F'0. Fundamental frequency
and harmonics are computed using the McAulay-
Quatieri Model (McAulay and Quatieri, 1986) pro-
vided by the SNDAN package (Beauchamp, 1993).

e Relative strengths of first three harmonics

 — __Amplitude;
RelAmp; = Amplitudeoyeralr’

where 7 denotes which harmonic.

e Relative frequency deviations of first three harmon-
ics _
RelDFr; = 5=210,
where f; is the frequency of the 7" harmonic

e Zero-crossing rate (ZCR), serving as an indicator of
the noisiness of the signal.

Furthermore, the derivatives of those features are also
included, as derivatives are good indicators of fluctuations
in the audio such as note attacks or fricatives.

All of those features are computed using a sliding non-
overlapping analysis window W with a size of 5.8 ms. If
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the audio to be processed has the sample rate of 44.1 KHz,
every analysis window contains 256 samples.

3.2 Segmentation Model

We use a multi-layer Neural Network as the segmentation
model (see Figure 5). It is a feed-forward network that is
essentially a non-linear function with a finite set of param-
eters. Each neuron (perceptron) is a Sigmoid unit, which
is defined as f(s) = 14-% where s is the input of the
neuron, and f(s) is the output. The input units accept those
features extracted from the acoustic signals. The output is
a single real value ranging from O to 1, indicating the like-
lihood of being a segmentation point for the current audio
frame. In other words, the output is the model’s estimate
of the certainty of a note onset. When using the model to
segment the audio file, an audio frame is classified as a
note onset if output of the segmenter is more than 0.5.

D

D

D

Layer 2

Input Layer 1 Output

Figure 5: Neural Network for Segmentation

Neural networks offer a standard approach for super-
vised learning. Labeled data are required to train a net-
work. Training is accomplished by adjusting weights
within the network to minimize the expected output error.
We use a conventional back-propagation learning method
to train the model.

We should note that the segmentation model used in
this project is a typical but rather simple one, and its per-
formance alone may not be the best among other more
complicated models. The emphasis of this paper is to
demonstrate that the alignment information can help train
the segmenter and improve its performance, not how well
the standalone segmenter performs.

4 Bootstrap Learning

After we get the estimated note onsets from the alignment
path found by DTW, we create a probability density func-
tion (PDF) indicating the possibility of being an actual
note onset at each time point in the acoustic recording.
As shown in Figure 6, the PDF is generated by overlap-
ping a set of Gaussian windows. Each window is centered
at the estimated note onsets given by the alignment path,
and has twice the size of the alignment analysis window
(2 x 0.05s = 0.1s). For those points outside any Gaus-



sian window, the value is assigned to a small value slightly
bigger than 0 (e.g. 0.04).
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Figure 6: PDF generated from the alignment of a snippet,
which is a phrase of the music content in Figure 2.

Then we run the following steps iteratively until either
the weights in the neural network converge, or the vali-
dation error reaches its minimum so as not to overfit the
data.

1. Execute segmentation process on the acoustic audio.

2. Multiply the sequence of real values v output by the
segmenter with the note onset PDF. The result is a
new sequence of values denoted as vy, -

3. For each estimated note onset, find a time point that
has the biggest value v;,¢,, within a window W,,, and
mark it as the adjusted note onset. The window is
defined as follows:

W(i) = fmaz (P32 T3 - W ).
min (%,TZ + Wa)],

where T}, is the estimated onset time of the it note in
the acoustic recording given by alignment, and W, is
the size of the analysis window for alignment.

4. Use the audio frames to re-train the neural network.
The adjusted note onset points are labeled as 1, and
the rest are labeled as 0. Because the dataset is imbal-
anced as the number of positive examples is far less
than the negative ones, we adjust the cost function to
increase the penalty when false negatives occur.

As the segmentation model has a smaller resolution
than the alignment model, the trained segmenter can de-

tect note boundaries in audio signals more precisely, as
demonstrated in Figure 7.

S EVALUATIONS

The experimental data is the English Suite composed by
R. Bernard Fitzgerald (Fitzgerald) for Bb Trumpet. It is
a set of 5 English folk tunes artfully arranged into one
work. Each of the 5 movements is essentially a mono-
phonic melody, and the whole suite contains a total of 673
notes. We have several formats of this particular music
piece, including the MIDI files created using a digital pi-
ano, the real acoustic recordings performed by the second
author, and synthetic audio generated from the MIDI files.

We run some experiments to compare two systems.
One is a baseline segmenter, which is pre-trained using a
different MIDI file and its synthetic data; the other is a
segmenter with the bootstrap method, which has the same
initial setup of the neural network as that of the baseline
segmenter, but the alignment information is used to help
iteratively train the segmenter. We run the baseline seg-
menter through all the audio files in the data set and com-
pare its detected note onsets with the actual ones. For the
segmenter with bootstrapping, we use cross-validation. In
every validation pass, 4 MIDI files and the corresponding
audio files are used to train the segmenter, and the remain-
ing MIDI-audio files pair is used as the validataion set for
stopping the training iterations to prevent data overfitting.
This process is repeated so that the data of all 5 move-
ments have once been used for validation, and the error
measuring results on the validation sets are combined to
evaluate the model performance.

We calculate several values to measure the perfor-
mance of the systems. Miss rate is defined as the ratio of
missed ones among all the actual note onsets — an actual
note onset is determined to be a missed one, when there is
no detected onset within the window W, around it; spu-
rious rate is the ratio between spurious ones detected by
the system and all the actual note onsets — spurious note
onsets include those detected ones that do not correspond
to any actual onset; average error and standard deviation
(STD) indicate the attribute of the distance between each
actual note onset and its corresponding detected one, if the
note onset is neither missed or spurious.

We first use the synthetic audio from MIDI files as the
data set, and the experimental results are shown in Table
1.

Table 1: Model Comparison on Synthetic Audio

Model Miss | Spurious | Average | STD
Rate | Rate Error

Baseline

Segmenter 8.8% | 10.3% 21 ms 29 ms

Segmenter

w/ Bootstrap | 0.0% | 0.3% 10 ms 14 ms

We also try the two segmenters on the acoustic record-
ings. However, it is very difficult to take overall measures,
as labeling all the note onsets in acoustic recordings is too
time consuming. We have to randomly pick a set of 100
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Figure 7: Note segmentation results on the same music content as in Figure 6. Note that the note onsets detected by the
segmenter with bootstrapping are not exactly the same as the ones estimated from alignment. This is best illustrated on

the note boundary around 1.8 seconds.

note onsets throughout the music piece (20 in each move-
ment), and measure their results manually. The results are
shown in Table 2.

Table 2: Model Comparison on Real Recordings

Model Miss | Spurious | Average | STD
Rate | Rate Error

Baseline

Segmenter 15.0% | 25.0% 35 ms 48 ms

Segmenter

w/ Bootstrap | 2.0% | 4.0% 8 ms 12 ms

As we can see, the baseline segmenter performs worse
on the real recordings than on the synthetic data, which
indicates there are indeed some differences between syn-
thetic audio and real recordings that can affect the perfor-
mance. Nevertheless, the segmenter with bootstrapping
continues to perform very well on recordings of an acous-
tic instrument.

6 CONCLUSIONS

Music segmentation is an important step in many music
processing tasks, including beat tracking, tempo analysis,
music transcription, and music alignment. However, seg-
menting music at note boundaries is rather difficult. In real
recordings, the end of one note often overlaps the begin-
ning of the next due to resonance in acoustic instruments
and reverberation in the performance space. Even humans
have difficulty deciding exactly where note transitions oc-
cur. One promising approach to good segmentation is ma-
chine learning. With good training data, supervised learn-
ing systems frequently outperform those created in an ad
hoc fashion. Unfortunately, we do not have very good
training data for music segmentation, and labeling acous-
tic recordings by hand is very difficult and time consum-
ing.
Our work offers a solution to the problem of obtain-
ing good training data. We use music alignment to tell
us (approximately) where to find note boundaries. This
information is used to improve the segmentation, and the
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segmentation can then be used as labeled training data to
improve the segmenter. This bootstrapping process is it-
erated until it converges.

Our tests show that segmentation can be dramati-
cally improved using this approach. Note that while we
use alignment to help train the segmenter, we tested the
trained segmenters without using alignment. Of course,
whenever a symbolic score is available, even more ac-
curate segmentation should be possible by combining the
segmenter with the alignment results.

Machine learning is especially effective when many
features must be considered. In future work, we hope
to improve further on segmentation by considering many
more signal features. This will require more training data,
but our bootstrapping method should make this feasible.

In summary, we have described a system for music
segmentation that uses alignment to provide an initial set
of labeled training data. A bootstrap method is used to
improve both the labels and the segmenter. Segmenters
trained in this manner show improved performance over
a baseline segmenter that has little training. Our boot-
strap approach can be generalized to incorporate addi-
tional signal features and other supervised learning algo-
rithms. This method is already being used to segment
acoustic recordings for a music synthesis application, and
we believe many other applications can benefit from this
new approach.
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