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ABSTRACT

We explore the automatic analysis of music to identify
likely hit songs. We extract both acoustic and lyric in-
formation from each song and separate hits from non-hits
using standard classifiers, specifically Support Vector Ma-
chines and boosting classifiers. Our features are based
on global sounds learnt in an unsupervised fashion from
acoustic data or global topics learnt from a lyrics database.
Experiments on a corpus of 1700 songs demonstrate per-
formance that is much better than random. The lyric-
based features are slightly more useful than the acoustic
features in correctly identifying hit songs. Concatenat-
ing the two features does not produce significant improve-
ments. Analysis of the lyric-based features shows that the
absence of certain semantic information indicates that a
song is more likely to be a hit.

Keywords: hit song detection, music classification.

1 INTRODUCTION

On April 4 1964 the Beatles accomplished what no band
had achieved until then; indeed what no other band has
achieved since. In addition to holding the No. 1 USA sin-
gle with “Can’t Buy Me Love” the Beatles also held the
No. 2 slot and the No. 3 slot. In fact Beatles songs oc-
cupied the first five positions on the charts. What exactly
was it that fueled the Beatles’ rise to fame? Is there an
intrinsic quality in music that predisposes it to greatness?
In this paper we examine these questions by studying au-
tomatic methods to identify hit songs.

The growth of the recording industry has resulted in an
abundance of music that requires automated methods of
organization and classification. Compression algorithms
such as the MP3 file format coupled with connectivity to
the internet and improvements in mass storage have con-
tributed to the widespread availability of music in digital
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form. The size of collective repositories clearly shows a
need for organization, but it is also evident that only an
automated system is feasible for such massive collections.

Several areas of classification have been proposed and
studied. Grouping songs by genre or artist similarity are
two common types of classification (e.g. Tzanetakis and
Cook, 2002; Berenzweig et al., 2003b). However seem-
ingly little work has been done on the specific subject of
classification and grouping by popularity.

Although societal, cultural, and other qualitative fac-
tors undoubtedly play a part in songs’ popularity, in this
work we search for some factor that can be quantified in
songs which makes them more likely to reach the top of
the charts. That is, we assume the group psychology that
makes a song popular is not entirely unpredictable, but is
somehow based on the qualities of music that appeal to a
broad spectrum of people.

Detecting popular songs has tremendous commercial
potential; in fact Hit Song Science' claims to have already
succeeded. If properly developed, such technology could
help record companies pinpoint the most promising songs
and artists and thus better focus their marketing. In this
paper we seek to determine if such technology is feasible.

2 Methods

There is a large body of literature on song writing and in-
deed some books even claim to teach how to write a hit
song (e.g. Blume, 2004). Clearly it isn’t as easy as sup-
posed but certainly melody, chords, lyrics and instrumen-
tation play a role. In this study, we use a very simple ap-
proach. We extract very general acoustic and lyric-based
features from songs then use standard classifiers to sepa-
rate hits from non-hits. Our methods are described below.

2.1 Acoustic Features

Raw acoustic waveforms are of too high dimension and
are too redundant for direct use. Therefore, many fea-
tures have been proposed to represent the salient proper-
ties of songs (e.g. see Tzanetakis and Cook, 2002, and ref-
erences). For hit song classification, we seek an unknown
intrinsic universal quality. We therefore extract features
from each song describing the main sounds present, where
these sounds are pre-learned from a corpora of widely
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varying music. Our method is similar to those which con-
vert songs to vectors according to sounds learnt by su-
pervised clustering (e.g. Foote, 1997; Berenzweig et al.,
2003a). We use unsupervised clustering since we don’t
know which sounds would be optimal for our classifica-
tion task.

Similar to previous studies, we characterize sounds us-
ing MFCC features thus focusing on timbrel aspects of the
music. Many other characterizations are possible however
such as those based on rhythmic or melodic features. We
first convert the songs in the training corpora to a set of
MFCC features then use K-means clustering to find the N
most prominent clusters. We can then convert any song
to an N-dimensional vector representation by computing
the likelihoods of the sound represented by each cluster
occuring in that song.

2.2 Lyric-Based Features

Lyrics are thought to be a large component of what makes
a song a hit so we therefore study features based on song
lyrics. In this work, we assume that for each song that we
can obtain a transcription of the lyrics, most likely from
the internet. Future systems may try to extract lyrics di-
rectly from audio. However this is beyond state of the art
at present.

Text can be analyzed using various methods. Al-
though we originally tried features based on repeating
phrases - inspired by song writing guides that claim hits
contain catchy, often repeated phrases - we found these
did not give good results. Instead we use features which
describe the semantic content of each song. Each song is
converted to a vector using Probabilistic Latent Semantic
Analysis (PLSA) (Hofmann, 1999). Similar to the acous-
tic features described above, each component of the vector
represents the likelihood that the song is about a pre-learnt
topic. The topics are characterized by the words that ap-
pear frequently in them and are learned during an auto-
matic training process. We have previously shown that
this technique can be effective for determining similarity
between songs based on lyrics (Logan et al., 2004).

2.3 Support Vector Machine Classifiers

The first classifier we use to separate hits from non-hits
is a Support Vector Machine (SVM) (e.g. Burges, 1998).
SVMs are standard classifiers used in many applications.
In their simplest implementation they learn a separating
‘thick’ hyper-plane between two classes which maximizes
the ‘margin’. This margin roughly corresponds to the dis-
tance between the data points residing at the edges of the
hyper-plane.

SVMs have several advantages which make them the
classifier of choice in many situations. First they do not
require any complex tuning of parameters. Second they
exhibit a great ability to generalize given a small training
corpora. Finally, they are particularly suited to learning in
high dimensional spaces.

2.4 Boosting Classifiers

Another popular classification technique is boosting
(Schapire, 1990; Freund and Schapire, 1995). Boosting
combines hundreds or even thousands of “weak learners”
in an optimal way. These weak learners could be any clas-
sifier (even SVMs) although for computational reasons
they are typically very simple. Each weak learner focuses
its attention on those training vectors where the previous
weak learners failed.

We use a variant of boosting proposed in (Tieu and
Viola, 2000) in which the weak learners are simple linear
classifiers on one dimension. This offers the advantage of
being less sensitive to spurious features. Components of
the feature vector that do not add any advantage are ig-
nored at the expense of more promising components. Ad-
ditionally, we are able to analyze the relative importance
of each feature in a principled way; a simple inspection of
the weak learners highlights those features that contribute
most to classification.

3 Databases

In this section we describe the databases used in our study.

3.1 Ground Truth

Since we are not aware of any publicly available database
of hits and non-hits, we use as ground truth data from the
Oz Net Music Chart Trivia Page®. This site lists all songs
which reached the No. 1 ranking in either the United
States, the United Kingdom, or Australia since records of
No. 1 songs were kept. We use data from January 1956 to
April 2004 producing a list of 4439 hit songs. Note that
we only consider number No. 1 songs rather than say Top
40 data.

3.2 Acoustic Data

We use an in-house database of approximately 18,500
songs as acoustic data. This data, was obtained by pooling
the personal music collections of several members of staff
at Hewlett Packard’s Cambridge Research Lab. The col-
lection covers many genres ranging from Reggae to Clas-
sical although rock songs form the majority of the collec-
tion, totaling around 13,000 songs.

3.3 Lyric Data

Lyrics are much more easily obtained than audio data as
several lyrics repositories are freely available on the in-
ternet. However many of these are not standardized or in
a format conducive to automated retrieval. Additionally,
many of these sites are not comprehensive enough for an
effective database.

One site with standardized pages is the Astraweb
Lyrics Search site>. We used data from this site in our
experiments. In total we downloaded lyrics for about 500
artists, totaling around 47000 songs, although some songs

2http:/fwww.onmec.iinet.net.au/trivia/hit list.htm
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were repeated on different albums. We stripped all HTML
tags, advertising, and excess information to obtain raw
lyrics for the songs.

Note that in many cases, the lyrics from this site are
not necessarily a verbatim transcript of each song. For
example, sometimes repeats of the chorus are simply de-
noted by “chorus” or not transcribed at all. This may have
been why our attempts to construct features based on re-
peating properties of the lyrics were less than successful
since the transcripts did not always faithfully represent the
lyrics.

3.4 Experimental Database

For our experiments we considered songs for which we
had both lyric and acoustic data. Of the 4000 or so hit
songs, we unfortunately only had both acoustic and lyric
data available for 91 songs. To complete the experimental
database we sampled from the remaining (non-hit) songs
for which both acoustics and lyrics were available to make
a set of around 1700 songs total. Our aim in restricting the
number of non-hits was to avoid a severely unbalanced
database.

4 Experiments

To investigate the performance of our proposed hit song
classifiers we conduct a series of experiments described
below.

4.1 Feature Extraction

We first convert each song in the 1700 song experimental
database to acoustic and lyric-based representations.

As described earlier, the first step in converting each
song to an acoustic representation is to learn the N most
prominent clusters in a general set of audio. Specifically,
we first convert each song in our training set to a series
of 20 dimensional MFCC vectors computed from over-
lapping 25ms windows sampled each 10ms. We discard
the Oth (DC) component of each vector then perform K-
means clustering to learn the N most prominent sounds.
For computational reasons, we do not learn these clusters
using the full 18,500 songs for which we have acoustic
data. Instead we sample from this database using around
200 songs to learn the K-means models.

We then convert each song in our experimental
database to a N-dimensional vector as follows. As before,
we convert each song to a series of MFCC vectors. For
each vector, we score it against each of the N clusters and
increment a counter for the cluster which scores highest.
The normalized set of counts forms the N-dimensional
representation for that song.

Similar to the acoustic case, the first step in converting
song lyrics to an N-dimensional representation is to learn
a set of topics from a text corpus. We used our set of lyrics
as the corpus and after eliminating stop words trained top-
ics according to the algorithm described in (Hofmann,
1999) using a dictionary of around 91,000 words. We then
score the lyrics for each song against these models to pro-
duce a normalized vector of counts similar to the acoustic
case above.
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4.2 Classification

We run experiments using 10-fold cross validation. This
mitigates somewhat the effect of experimenting with such
a small database since by averaging over 10 “cuts” of the
data into testing and training sets, we reduce the impact
of a particularly easy or particularly hard set. Our figure
of merit for each classifier is the area under the Receiver
Operating Characteristic (ROC) curve. An ROC curve
plots sensitivity vs. (1-specificity), essentially describing
the trade-off between false negatives and false positives
as the classifier’s threshold is varied. Random classifiers
have ROC area 0.5 and perfect classifiers have ROC area
1.0.

Figures 1 and 2 show the ROC area averaged over
the 10 cross validation cuts of the experimental database
for SVM and boosting classifiers trained on the acoustic-
based and lyrics-based features. We show results for vary-
ing numbers of audio sounds and topics. Also shown for
reference is the 0.5 ROC area which would result from
random classification.
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Figure 1: Average ROC area for acoustic-based features
with various numbers of sounds for SVM and boosting
classifiers
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Figure 2: Average ROC area for lyric-based features with
various numbers of topics for SVM and boosting classi-
fiers

From these plots we see that even with the simple fea-
tures and classifiers proposed, we can achieve better than
random performance. We also see that there the results
are comparable for the two classifiers. Lyric-based fea-
tures appear to give slightly better performance overall
than acoustic-based features. The best result obtained us-
ing lyrics features is average ROC area 0.68 obtained us-
ing 8-topic models. This is slightly better than 0.66, the
best result obtained using acoustic features obtained for
both 32 and 128-sound models.

We now consider combining acoustic and lyric-based
features. We achieve this by concatenating the vectors for
the two representations. Figure 3 shows results for this ex-
periment. For simplicity, this plot only shows results for



concatenating equal length vectors. For example the “Vec-
tor Size 16” result is obtained using feature vectors formed
by concatenating length 8 acoustic vectors and length 8
lyric vectors. We also investigated non-equal combina-
tions of acoustic and lyric vectors and saw comparable
results.
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Figure 3: Average ROC area for combined acoustic and
lyrics features with varying vector sizes for SVM and
boosting classifiers

The best result for combining acoustic and lyric fea-
tures is average ROC area 0.69. This is obtained by
concatenating 32-sound audio features and 8-topic lyric
features. This is only moderately better than average
ROC area 0.68, the best result obtained using lyrics alone.
Given the relatively small size of the experiment, it is un-
clear then whether the combined feature set improves per-
formance.

S Analysis of Results

As discussed earlier, a nice property of the boosting clas-
sifier used is that by analyzing the weights of the weak
learners we can identify which dimensions of the feature
vectors are most helpful for classification. We therefore
performed this analysis for the 8-topic lyric vectors.

Table 1 shows the most frequent words which char-
acterize each topic in the 8 topic case. By analyzing the
boosting models, we found that by far the most important
features for distinguishing hits were Topic 1 and Topic
6. These appear to describe “heavy metal” and “peace-
ful/new age” music. Interestingly, nearly all of the weak
learners learnt negative boundaries. That is, the absence
of Topic 1 or Topic 6 meant the song was more likely to be
a hit. Topic 4 which describes generic love songs was the
main topic whose presence meant the song was likely to
be a hit. However, its impact was much lower than Topics
1 or 6.

Table 1: Most frequent words characterizing 8-topic mod-
els

Topic | Characterizing Words
0 N*GGA SH*T F*CK YA DONT B*TCH
1 BLOOD CHILDREN WAR DANCE HES
2 DONT YOURE SAY THATS MONEY
3 YO DONT CAUSE EM THATS X YALL
4 YEAH OH GIRL HEY SHES BABY
5 LOVE DONT OH YOURE BABY SAY
6 AWAY DAY EYES THERES IVE GONE
7 LA QUEDE Y TE BYE MI TU ES YO EN

6 Conclusions and Future Work

Our results suggest that there is indeed some distinguish-
able thread connecting hit songs. More experimentation
is needed, but even our first attempts in this study led to
classifiers that are better than random. It seems then that
we cannot simply dismiss claims by companies such as
Hit Song Science as impossible.

Our results indicate that for the features used, lyric-
based features are slightly more effective than audio-based
features at distinguishing hits. Combining features does
not significantly improve performance. Analysis of the
best lyric-based system shows that the absence rather than
the presence of certain semantic information in the lyrics
mean a song is more likely to be a hit.

Numerous extensions of this research are possible. For
example, future work should examine different weight-
ings of the audio and lyrical data, use larger data sets, and
attempt classification within smaller groupings, such as
music by decade, or music by style. Different kinds of
acoustic and lyric features should also be studied. In par-
ticular, rhythmic and melodic features merit exploration.
Finally, since popular music is continually evolving, time-
varying classifiers should be studied.
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