EFFICIENT MELODY RETRIEVAL WITH MOTIF CONTOUR CLASSES

Tillman Weyde
City University
School of Informatics
Department of Computing
London, UK
t.e.weyde@city.ac.uk

ABSTRACT

This paper describes the use of motif contour classes for
efficient retrieval of melodies from music collections. In-
stead of extracting incipits or themes, complete mono-
phonic pieces are indexed for their motifs, using classes of
motif contours. Similarity relations between these classes
can be used for a very efficient search. This can serve as
a first level search, which can be refined by using more
computationally intensive comparisons on its results. The
model introduced has been implemented and tested using
the MUSITECH framework. We present empirical and
analytical results on the retrieval quality, the complexity,
and quality/efficiency trade-off.

Keywords: melody retrieval, motivic analysis, melodic
similarity, retrieval efficiency

1 INTRODUCTION

Although audio retrieval has been in the focus of atten-
tion lately, melody retrieval based on symbolic music rep-
resentations is important for databases like Themefinder!
and Digital Tradition? and will likely become more impor-
tant in the near future with the development of the MPEG
standard on Symbolic Music Representation®. The most
common approach for melody retrieval today is to com-
pare a query to a melody that has somehow been extracted
from a piece of music, comparing query and melody as a
whole using an edit distance approach.

The basic idea of this paper is to use musical motifs
for melody retrieval, similarly as words are used in text
retrieval. Musical motifs, as defined by Riemann (1903),
are the smallest musically meaningful parts of a melody.

' http://www.themefinder.org/

2 http://www.mudcat.org/AboutDigiTrad.cfm
3 http://www.interactivemusicnetwork.org/
mpeg-ahg/

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

(©2005 Queen Mary, University of London

686

Christian Datzko
University of Osnabriick
Research Department of

Music and Media Technology
Osnabriick, Germany
christian@datzko.ch

Retrieval based on motifs is independent of the size of
the pieces in the database. Provided the voice structure
is known, complete symphonies can be indexed and re-
trieved this way. This method captures similarities that re-
sult from recombination of motivic material. Similarities
between motifs can also be taken into account.

Indexing techniques relying on manual extraction of
themes etc. are costly and limit the search, therefore au-
tomatically indexing a complete piece of music is a way
of efficiently making more information accessible. Work
in this direction has been done by Clausen et al. (2001),
whose system builds an index for every note in a piece —
leading to large indexes — and requires information on the
metrical structure. An approach to use more musical in-
telligence has been taken by Melucci and Orio (2004) by
indexing musical phrases. We chose to use motifs rather
than phrases, because motifs are shorter and not as spe-
cific to a piece and therefore better suited for building an
index.

2 ARCHITECTURE

The approach taken here is to index motifs using their
contour classes, thus reducing the number of entries by
joining similar motifs. Motif classes have been used for
a similarity based search using representation at different
degrees of abstraction by Melucci and Orio (2004), but
that approach is insufficient to reflect the musical similar-
ity of melodies, because it means introducing or reducing
subdivisions of classes. However, similarities across the
highest level of class boundaries cannot be detected. To
broaden the search, here the similarity of different con-
tour classes is utilized for fault tolerant and incremental
search.

Especially on large databases, a sophisticated measure
of similarity may be useful but computationally too ex-
pensive to perform on all pieces. These measures can be
utilized in our system as a second-level search on the re-
sult set of the first search based on motif classes.

Before one can search a database of pieces, an index
is generated with the following steps:

1. segmentation of the pieces
2. contour analysis of the motifs
3. indexing of motif contours

Once the index is created, melodies can be searched for.
This is done in five steps:

segmentation of the query

contour analysis of the motifs

search for the motif classes

calculating similarity of the motif classes
fine search on the results

Nk W=

3 INDEX GENERATION
3.1 Segmentation

The segmentation divides a melody into motifs as in fig-
ure 1. It is the first step in processing and is important for
the quality of the results. The more the segments form mu-
sically meaningful motifs of the melody, the better search
results can be expected. To enable experiments on this, the
actual segmenter module is exchangeable. For efficiency
and simplicity a simple segmenter has been used in these
first experiments that sets the boundaries at the local max-
ima of note distances. This approach has been applied
successfully (Cambouropoulos, 2001), but using a more
sophisticated segmenter could improve search results (see
Weyde, 2002).

Hy

&N
wv
o (ol

e— %
I
— ol
-\
L 188

L 188

e
TM
N

w |I_:7

]

Figure 1: Segmentation of the melody “Der Mai ist
gekommen” (German folk song).

3.2 Contour Analysis of Segments

Contour information is stored for two aspects of a seg-
ment: its rhythmic values and its pitches. The motif is
coded using a diastematic index. This means that only
three values per dimension are used for the transition be-
tween two notes: whether a note is longer, shorter, or of
equal length and whether a note is higher, lower, or of
same pitch. This can be represented as a character string
s(M), where M = ny,...,n,, is a melody, L(n;) the
length of note n; and P(n;) its pitch, and + denotes string
concatenation:

S(M) = {s(nl, cosm—1) + k(Nm—1,my) if m>2
“r if m<2
(1)
“U” if P(n1) < P(ng)
k(ni,ns) = {E" if P(ni)=Pna) ()
“D” if P(ny1) > P(n2)
“L” if L(ny) < L(ng)
+{“E” if L(ny) = L(ns)
“S” if L(n1) > L(nz)

3.3 Indexing of the Segment Contours

A contour string K = (kq,...,k,) is converted into an
integer number using the bijective function e:

.94 .
o(K) = e(k1. mn—2) 24+ b(kn_1,kn) if n > 0
0 otherwise
3)

01000 if Ky =*U”
10006 if k; =“E” “)

11006 if ky =“D”

01b if ko =*L"

+ 4106 if ko =“E”

110 if ke =S”

b(ky, ko) =

s allows to code motifs up to a length of 9 notes in a 32-bit
integer. This is below the theoretical limit of 10 notes*,
but it is sufficient because musically meaningful motifs
do not exceed this length due to limits of perception (see
Miller, 1956; Swain, 1986). If a segmenter produces seg-
ments longer than 9 notes, these notes will be cut off in
the current implementation.

The contours of the example in figure 1 would
be UEULEL = 0110010110016 = 1625, ULDL =
010111016 = 93, UL = 01016 = 5, EL = 1001b = 9
and DL = 11016 = 13. This coding as integer values
allows efficient indexing of pieces by motif classes.

4 SEARCH PROCEDURE

The search is carried out in two stages: a rough search that
uses a similarity value based only on the motif classes, and
a fine search that elaborates on the result set.

4.1 Rough Search

Firstly the query melody is segmented and the motif con-
tours are classified as described above. Then the pieces
are rated for their similarity and relevance to the query.

4.1.1 Motif Class Similarity

The local similarity of two motif classes k, [is calculated

as
1

d(k,1)+1’
where d(k,!) is the Levenshtein distance between con-
tours (see Gilleland 2004). It calculates the minimum
number of changes needed to transform contour S into
contour (). A change is either the insertion, the deletion
or the change of a transition as described in section 3.2.

4.1.2 Weighting

lsim(k,l) = %)

The contour classes of the query and of pieces in the data-
base are weighted based on their frequency in the data-
base and in the melodies as in standard text information
retrieval (van Rijsbergen, 1979):

v
W, = — e 6)

v Zk Vs k ’

with

N .
Us’lz{g(s,z).log(m) it omA0 o

otherwise

* Rhythm and pitch can each take 3 values yielding 9 combina-
tions per note transition plus 1 if no note is present. Therefore
the number of possible values for a motif of length { is 10'~*.
The maximal length of motifs that can be represented is there-
fore |log,,(2%?) + 1] = 10.

687

where f(S,1) is the frequency of motif class [in
melody S, N is the total number of pieces in the data-
base, and n; is the number of pieces containing a motif
of class [. Imposing a penalty on common motif classes
introduces a relevance aspect based on the pieces in the
database, in addition to the concept of similarity between
two melodies. The weights wg; are normalized to make
the values independent of the lengths of the S.

4.1.3 Similarity of Melodies

For the overall rating of a piece and in relation to a query,
the most similar motif class in the piece is determined for
every motif class present in the query, yielding a set L,
of pairs (k,) of motif classes. The rating sim of a query
@ and a piece S is then calculated as

sim(Q, S) = Z

(k,\l)ELmax

lsim(k,1) - wg k- wsy (8)

The sim measure yields values between 0 for completely
different and 1 for identical melodies. The value 1 is also
reached by melodies sharing the same distribution of mo-
tif classes. We did not encounter such a case in the exper-
iments, but this possibility makes it especially useful for
large databases to have a fine search that enables differen-
tiation between such melodies.

4.2 Fine Search

The fine search takes the results of the rough query and
performs comparisons, that are based on their the actual
notes instead of the contours, which may be computation-
ally more expensive. Currently two different fine search
methods are implemented. They calculate similarity mea-
sures on the motifs, which are multiplied with the sim
value. One method returns 1 only if the two compared
segments are identical except for transposition and tempo
changes, the second uses the CubyHum algorithm (Pauws,
2002), which is an edit distance variant specialized for
melody retrieval.

S EVALUATION

The described system has been implemented and tested
using the MUSITECH framework (see Gieseking and
Weyde, 2002).

5.1 Quality

For a first quality assessment we used small subsets of
ground truth data from the experiments of Typke et al.
(2005) and Miillensiefen and Frieler (2004) giving cor-
relations of 0.59 and 0.36 between our sim values and the
ground truth, which we see as a good result for a rough
search. The currently implemented fine search improved
the correlation only by up to 0.03, which indicates that
here is a need for a different method.

5.2 Complexity

The time needed to compute the motif classes only de-
pends on the length m of a melody, thus taking O(m)

688

o ' ' i Recall error (in'%)
index size, 5 notes, (in 10 MBs)
nor i index size, 6 notes

index size, 7 notes

d max

Figure 2: Recall error and index size depending on d, 4
and maximal motif length.

time. A database containing N pieces of average length
m needs O(m - N) time to be indexed. These values de-
pend only on the pieces in the database, and therefore only
need to be computed once for each piece. The amount of
space required for the index also depends on the number
of motif classes in a melody, which means at most linearly
on the length of the melody, and the size of the database.
So the space requirement for the index is also O(m - N).

The time requirement for a naive implementation of
the rough search is O(q - m - N - [?) where q is the length
of the query, since every motif class of the query must be
compared to each motif class of every piece in the data-
base. [? is the complexity of calculating the Isim values,
where [is the length of the motifs.

The fine search uses more time for each comparison,
for example when using the CubyHum algorithm, it uses
O(q? - m? - R) time, where R is the size of the result set.

5.3 Optimization

The naive implementation of the rough search is too slow
to be used on large databases, but it can be optimized us-
ing the opportunities provided by the motif classes. It is
possible to perform much of the computing in advance and
to use inverted files, reducing the time needed to search a
potentially large database with the trade-off of higher stor-
age demands.

Since the number of motif classes is limited, [sim
values of classes can be calculated beforehand, indepen-
dently of any actual data. If the similarity for every pair
of classes is stored, the size of the index then depends on

the length of the motifs as (30 9%~1)2 where l,q is
the maximal length of the motifs. Judging from the liter-
ature, a motif length of 7 is sufficient, probably less ac-
cording to Swain (1986). Yet storing the [sim value for
each combination would result in over a terabyte of data
which is out of the scope of current computers. The in-
dex size can be reduced by indexing only those pairs of
motif classes, where the [sim value is above a threshold
1$iMynin, resp. d(k,l) below a threshold d,y,q,. This re-
duces reduces the size of the [s¢m index and the number
of matches for which a sim value has to be calculated.
The trade-off is a loss in recall, i.e. some of the pieces be-

low the threshold might have received a good final rating.
We computed the loss of recall of the rough search on a
set of almost 4000 MIDI files from the Digital Tradition
database’ and the size of the index for different values of
dimaz and [, 4, as shown in figure 2. The recall error was
calculated as the portion of pieces in the top 10% that is
excluded by the threshold (which is in this case identical
to the precision value). It drops sharply from d,, 4, values
0to 1 from over 70% to 1,75% and to 0,25% at d,,,q = 2,
while the index size grows exponentially with at d,,,,,. and
lmaz- A good compromise can be found at d,,,4,, = 1 and
l;maz = 6 where the index size is below 50 MB which can
easily be held in RAM. This method also supports incre-
mental search, first using d, ;o = 0 and then d,,q, = 1.
The class frequencies can be stored along with the
melodies in the motif index, as can the inverted frequen-
cies of classes over the database, but they must be updated
at every change of database content. Using this method,
the whole rough search takes O(q - R;) time where R; is
the size of the result set after the threshold. The constant
factor is also reduced, because of the lookups of the [sim
values. The size of R; depends on the data and the queries
and was with d,,., = 1 and [,,,4, = 6 at about 50% of
the database size in our experiments. The size of R; can
be influenced by a second threshold d),.q4 on the product
wq k- Isim(k,1)-wg,. Since wq j is available at the time
of the search and both other values are precomputed, it can
be used to reduce RR; before computing the sim values.

6 CONCLUSIONS

The use of motif classes brings two advantages to melody
retrieval. It makes the matching of the query with
melodies in the database independent of the position and
order of motivic material used. It therefore makes the
extraction of themes unnecessary because the length of
pieces it not relevant. It also captures musical relations,
that are not taken into account by approaches based on the
edit distance of whole melodies.

It also offers methods for efficient and incremental
searching through the use of indexes and similarities. The
use of precalculated similarities of motif classes allows
very efficient and musically adequate incorporation of in-
exact matches.

Directions for further research include testing on fur-
ther ground truth data, experimenting with fine search
methods to improve the end results, tests with more elab-
orate segmenters, and the investigation of methods to con-
trol the size of the result set R; in oder to optimize search
times and result quality.

REFERENCES

E. Cambouropoulos. The local boundary detection model
(Ibdm) and its application in the study of expressive
timing. In Proceedings of the International Com-
puter Music Conference 2001, pages 290-293, Ha-
vanna, Cuba, 2001.

M. Clausen, F. Kurth, and R. Engelbrecht. Context-based

5

http://sniff.numachi.com/~rickheit/dtrad/.

retrieval in midi and audio. In D. Fellner, N. Fuhr, and
I. Witten, editors, ECDL Workshop: Generalized Doc-
uments, Darmstadt, 2001.

M. Gieseking and T. Weyde. Concepts of the musitech
infrastructure for internet-based interactive musical ap-
plications. In C. Busch, M. Arnold, P. Nesi, and
M. Schmucker, editors, Proceedings of the Second In-
ternational Conference on WEB Delivering of Music
(WEDELMUSIC 2002), pages 30-37, Darmstadt, 2002.
IEEE / Fraunhofer IGD.

M. Gilleland. Levenshtein dis-
tance, in three flavors, 2004. URL
http://www.merriampark.com/1ld.htm.

M. Melucci and N. Orio. Combining melody process-
ing and information retrieval techniques: methodology,
evaluation, and system implementation. J. Am. Soc. Inf.
Sci. Technol., 55(12):1058-1066, 2004.

G. A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing infor-
mation. The Psychological Review, 63:81-97, 1956.

D. Miillensiefen and K. Frieler. Cognitive adequacy in
the measurement of melodic similarity: Algorithmic vs.
human judgments. Computing in Musicology, 13:147—
176, 2004.

S. Pauws. Cubyhum: A fully operational query by hum-
ming system. In M. Fingerhut, editor, ISMIR 2002 Con-
ference Proceedings — Third International Conference
on Music Information Retrieval, Paris, 2002. IRCAM —
Centre Pompidou.

H. Riemann. System der musikalischen Rhythmik und
Metrik. Breitkopf und Hirtel, Leipzig, 1903.

J. P. Swain. The need for limits in hierarchical theories of
music. Music Perception, 4(1):121-148, 1986.

R. Typke, M. den Hoed, J. de Nooijer, F. Wiering, and
R. C. Veltkamp. A ground truth for half a million mu-
sical incipits. In Proceedings of the 5th Dutch-Belgian
Information Retrieval Workshop (DIR) 2005, pages 63—
70, Utrecht, 2005.

C. J. van Rijsbergen. Information Retrieval. Butterworth,
London, 1979.

T. Weyde. Integrating segmentation and similarity
in melodic analysis. In K. Stevens, D. Burnham,
G. McPherson, E. Schubert, and J. Renwick, editors,
Proceedings of the International Conference on Music
Perception and Cognition 2002, pages 240-243, Syd-
ney, Australia, 2002.

689

